2020高考数学(文)专项复习《函数》含答案解析.doc
-
资源ID:2430315
资源大小:1.15MB
全文页数:57页
- 资源格式: DOC
下载积分:6金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2020高考数学(文)专项复习《函数》含答案解析.doc
函数函数是中学数学中的重点内容,是描述变量之间依赖关系的重要数学模型本章内容有两条主线:一是对函数性质作一般性的研究,二是研究几种具体的基本初等函数一次函数、二次函数、指数函数、对数函数、幂函数研究函数的问题主要围绕以下几个方面:函数的概念,函数的图象与性质,函数的有关应用等21 函 数【知识要点】要了解映射的概念,映射是学习、研究函数的基础,对函数概念、函数性质的深刻理解在很多情况下要借助映射这一概念1、设A,B是两个非空集合,如果按照某种对应法则f,对A中的任意一个元素x,在B中有一个且仅有一个元素y与x对应,则称f是集合A到集合B的映射记作f:AB,其中x叫原象,y叫象2、设集合A是一个非空的数集,对A中的任意数x,按照确定的法则f,都有唯一确定的数y与它对应,则这种映射叫做集合A上的一个函数记作yf(x),xA其中x叫做自变量,自变量取值的范围(数集A)叫做这个函数的定义域所有函数值构成的集合yyf(x),xA叫做这个函数的值域函数的值域由定义域与对应法则完全确定3、函数是一种特殊的映射其定义域和值域都是非空的数集,值域中的每一个元素都有原象构成函数的三要素:定义域,值域和对应法则其中定义域和对应法则是核心【复习要求】1了解映射的意义,对于给出对应关系的映射会求映射中指定元素的象与原象2能根据函数三要素判断两个函数是否为同一函数3掌握函数的三种表示法(列表法、图象法和解析法),理解函数符号f(x)(对应法则),能依据一定的条件求出函数的对应法则4理解定义域在三要素的地位,并会求定义域【例题分析】例1 设集合A和B都是自然数集合N映射f:AB把集合A中的元素x映射到集合B中的元素2xx,则在映射f作用下,2的象是_;20的原象是_【分析】由已知,在映射f作用下x的象为2xx所以,2的象是2226;设象20的原象为x,则x的象为20,即2xx20由于xN,2xx随着x的增大而增大,又可以发现24420,所以20的原象是4例2 设函数则f(1)_;若f(0)f(a)2,则a的所有可能值为_【分析】从映射的角度看,函数就是映射,函数解析式就是映射的法则所以f(1)3又f(0)1,所以f(a)1,当a0时,由a11得a0;当a0时,由a22a21,即a22a30得a3或a1(舍)综上,a0或a3例3 下列四组函数中,表示同一函数的是( )(A)(B)(C)(D)【分析】(A)(C)(D)中两个函数的定义域均不同,所以不是同一函数(B)中两个函数的定义域相同,化简后为yx及yt,法则也相同,所以选(B)【评析】判断两个函数是否为同一函数,就是要看两个函数的定义域与法则是否完全相同一般有两个步骤:(1)在不对解析式进行变形的情况下求定义域,看定义域是否一致(2)对解析式进行合理变形的情况下,看法则是否一致例4 求下列函数的定义域(1)(2)(3)(4)解:(1)由x110,得x11,所以x11或x11,所以x2或x0所以,所求函数的定义域为xx2或x0(2)由x22x30得,x1或x3所以,所求函数的定义域为xx1或x3(3)由得x3,且x0,x1,所以,所求函数的定义域为x|x3,且x0,x1(4)由所以1x1,且x0所以,所求函数定义域为x1x1,且x0例5 已知函数f(x)的定义域为(0,1),求函数f(x1)及f(x2)的定义域【分析】此题的题设条件中未给出函数f(x)的解析式,这就要求我们根据函数三要素之间的相互制约关系明确两件事情:定义域是指x的取值范围;受对应法则f制约的量的取值范围在“已知”和“求”当中是一致的那么由f(x)的定义域是(0,1)可知法则f制约的量的取值范围是(0,1),而在函数f(x1)中,受f直接制约的是x1,而定义域是指x的范围,因此通过解不等式0x11得1x0,即f(x1)的定义域是(1,0)同理可得f(x2)的定义域为x1x1,且x0例6 如图,用长为l的铁丝弯成下部为矩形,上部为半圆形的框架,若矩形的底边长为2x,求此框架围成的面积y与x的函数关系式,并指出定义域解:根据题意,AB2x所以,根据问题的实际意义AD0,x0解所以,所求函数定义域为【评析】求函数定义域问题一般有以下三种类型问题(1)给出函数解析式求定义域(如例4),这类问题就是求使解析式有意义的自变量的取值范围正确的解不等式或不等式组在解决这类问题中是重要的中学数学中常见的对变量有限制的运算法则有:分式中分母不为零;偶次方根下被开方数非负;零次幂的底数要求不为零;对数中的真数大于零,底数大于零且不等于1;ytanx,则,kZ(2)不给出f(x)的解析式而求定义域(如例5)其解决办法见例5的分析(3)在实际问题中求函数的定义域(如例6)在这类问题中除了考虑解析式对自变量的限制,还应考虑实际问题对自变量的限制另外,在处理函数问题时要有一种随时关注定义域的意识,这是极其重要的比如在研究函数单调性、奇偶性、最值等问题时,首先要考虑的就是函数的定义域例7 (1)已知,求f(x)的解析式;(2)已知,求f(3)的值;(3)如果f(x)为二次函数,f(0)2,并且当x1时,f(x)取得最小值1,求f(x)的解析式;(4)*已知函数yf(x)与函数yg(x)2x的图象关于直线x1对称,求f(x)的解析式【分析】(1)求函数f(x)的解析式,从映射的角度看就是求对应法则,于是,我们一般有下面两种方法解决(1)这样的问题方法一通过这样“凑型”的方法,我们可以明确看到法则f是“原象对应于原象除以原象的平方减1”所以,方法二设,则则,所以这样,通过“换元”的方法也可以明确看到法则是什么(2)用“凑型”的方法,(3)因为f(x)为二次函数,并且当x1时,f(x)取得最小值1,所以,可设f(x)a(x1)21,又f(0)2,所以a(01)212,所以a3f(x)3(x1)213x26x2(4)这个问题相当于已知f(x)的图象满足一定的条件,进而求函数f(x)的解析式所以,可以类比解析几何中求轨迹方程的方法求f(x)的解析式设f(x)的图象上任意一点坐标为P(x,y),则P关于x1对称点的坐标为Q(2x,y),由已知,点Q在函数yg(x)的图象上,所以,点Q的坐标(2x,y)满足yg(x)的解析式,即yg(2x)22x,所以,f(x)22x【评析】由于已知条件的不同,求函数的解析式的常见方法有象(1)(2)所用到的“凑形”及“换元”的方法;有象(3)所用到的待定系数法;也有象(4)所用到的解析法值得注意的是(4)中所用的解析法在求函数解析式或者求轨迹方程时都可以用这种方法,是一种通法同时也表明函数和它的图象与曲线和它的方程之间有必然的联系例8 已知二次函数f(x)的对称轴为x1,且图象在y轴上的截距为3,被x轴截得的线段长为4,求f(x)的解析式解:解法一设f(x)ax2bxc,由f(x)的对称轴为x1,可得b2a;由图象在y轴上的截距为3,可得c3;由图象被x轴截得的线段长为4,可得x1,x3均为方程ax2bxc0的根所以f(1)0,即abc0,所以a1f(x)x22x3解法二因为图象被x轴截得的线段长为4,可得x1,x3均为方程f(x)0的根所以,设f(x)a(x1)(x3),又f(x)图象在y轴上的截距为3,即函数图象过(0,3)点即3a3,a1所以f(x)x22x3【评析】二次函数是非常常见的一种函数模型,在高中数学中地位很重二次函数的解析式有三种形式:一般式yax2bxc;顶点式ya(xh)2k,其中(h,k)为顶点坐标;双根式ya(xx1)(xx2),其中x1,x2为函数图象与x轴交点的横坐标,即二次函数所对应的一元二次方程的两个根例9 某地区上年度电价为0.8元kWh,年用电量为akWh本年度计划将电价降到0.55元kWh至0.75元kWh之间,而用户期望电价为0.40元kWh经测算,下调电价后新增的用电量与实际电价和用户期望电价的差成反比(比例系数为k)该地区电力的成本价为0.30元kWh(1)写出本年度电价下调后,电力部门的收益y与实际电价x的函数关系式;(2)设k0.2a,当电价最低定为多少时,仍可保证电力部门的收益比上年至少增长20?解:(1)依题意,当实际电价为x元kWh时,用电量将增加至故电力部门的收益为(2)易知,上年度的收益为(0.80.3)a,依题意,且0.55x0.75,解得0.60x0.75所以,当电价最低定为0.60元kWh时,仍可保证电力部门的收益比上年至少增长20练习21一、选择题1已知函数的定义域为M,g(x)ln(1x)的定义域为N,则MN( )(A)xx1(B)xx1(C)x1x1(D)2图中的图象所表示的函数的解析式为( )(A)(B)(C)(D)y1x1(0x2)3已知f(x1)x22x,则( )(A)(B)(C)(D)4已知若f(x)3,则x的值是( )(A)0(B)0或(C)(D)二、填空题5给定映射f:(x,y)(x2y,x2y),在映射f下(0,1)的象是_;(3,1)的原象是_6函数的定义域是_7已知函数f(x),g(x)分别由下表给出x123x123f(x)131g(x)321则fg(1)的值为_;满足fg(x)gf(x)的x的值是_8已知函数yf(x)与函数yg(x)2x的图象关于点(0,1)对称,则f(x)的解析式为_三、解答题9已知f(x)2xx1,求g(1),gf(1)的值10在如图所示的直角坐标系中,一运动物体经过点A(0,9),其轨迹方程为yax2c(a0),D(6,7)为x轴上的给定区间为使物体落在区间D内,求a的取值范围11如图,直角边长为2cm的等腰RtABC,以2cms的速度沿直线l向右运动,求该三角形与矩形CDEF重合部分面积y(cm2)与时间t的函数关系(设0t3),并求出y的最大值22 函数的性质【知识要点】函数的性质包括函数的定义域、值域及值的某些特征、单调性、奇偶性、周期性与对称性等等本章着重研究后四个方面的性质本节的重点在于理解与函数性质有关的概念,掌握有关判断、证明的基本方法以及简单的应用数形结合是本节常用的思想方法1设函数yf(x)的定义域为D,如果对于D内的任意一个x,都有xD,且f(x)f(x),则这个函数叫做奇函数设函数yg(x)的定义域为D,如果对于D内任意一个x,都有xD,且g(x)g(x),则这个函数叫做偶函数由奇函数定义可知,对于奇函数yf(x),点P(x,f(x)与点(x,f(x)都在其图象上又点P与点关于原点对称,我们可以得到:奇函数的图象是以坐标原点为对称中心的中心对称图形;通过同样的分析可以得到,偶函数的图象是以y轴为对称轴的轴对称图形2一般地,设函数yf(x)的定义域为A,区间MA如果取区间M中的任意两个值x1,x2,改变量xx2x10,则当yf(x2)f(x1)0时,就称函数yf(x)在区间M上是增函数;当yf(x2)f(x1)0时,就称函数yf(x)在区间M上是减函数如果一个函数在某个区间M上是增函数或是减函数,就说这个函数在这个区间M上具有单调性,区间M称为单调区间在单调区间上,增函数的图象是上升的,减函数的图象是下降的3一般的,对于函数f(x),如果存在一个不为零的常数T,使得当x取定义域中的每一个值时,f(xT)f(x)都成立,那么就把函数yf(x)叫做周期函数,不为零的常数T叫做这个函数的周期4一般的,对于函数f(x),如果存在一个不为零的常数a,使得当x取定义域中的每一个值时,f(ax)f(ax)都成立,则函数yf(x)的图象关于直线xa对称【复习要求】1理解函数的单调性、最大值、最小值及其几何意义;会用定义证明函数的单调性,会利用函数的单调性处理有关的不等式问题;2了解函数奇偶性的含义能判断简单函数的奇偶性3了解函数周期性的含义4了解函数单调性、奇偶性和周期性之间的联系,并能解决相关的简单问题【例题分析】例1 判断下列函数的奇偶性(1)(2)(3)f(x)x33x;(4)(5)解:(1)解,得到函数的定义域为xx1或x0,定义域区间关于原点不对称,所以此函数为非奇非偶函数(2)函数的定义域为xx0,但是,由于f(1)2,f(1)0,即f(1)f(1),且f(1)f(1),所以此函数为非奇非偶函数(3)函数的定义域为R,又f(x)(x)33(x)x33xf(x),所以此函数为奇函数(4)解,得1x1,又所以此函数为奇函数(5)函数的定义域为R,又,所以此函数为奇函数【评析】由函数奇偶性的定义,可以得到下面几个结论:一个函数是奇(或偶)函数的必要不充分条件是定义域关于原点对称;f(x)是奇函数,并且f(x)在x0时有定义,则必有f(0)0;既是奇函数又是偶函数的函数,其解析式一定为f(x)0判定函数奇偶性按照其定义可以分为两个步骤:判断函数的定义域是否关于原点对称;考察f(x)与f(x)的关系由此,若以奇偶性为标准可以把函数分为奇函数,偶函数,既奇又偶函数和非奇非偶函数四类例2 设函数f(x)在R上有定义,给出下列函数:yf(x);yxf(x2);yf(x);yf(x)f(x)其中必为奇函数的有_(填写所有正确答案的序号)【分析】令F(x)f(x),则F(x)f(x),由于f(x)与f(x)关系不明确,所以此函数的奇偶性无法确定令F(x)xf(x2),则F(x)xf(x)2xf(x2)F(x),所以F(x)为奇函数令F(x)f(x),则F(x)f(x)f(x),由于f(x)与f(x)关系不明确,所以此函数的奇偶性无法确定令F(x)f(x)f(x),则F(x)f(x)f(x)f(x)f(x)F(x),所以F(x)为奇函数所以,为奇函数例3 设函数f(x)在R上有定义,f(x)的值不恒为零,对于任意的x,yR,恒有f(xy)f(x)f(y),则函数f(x)的奇偶性为_解:令xy0,则f(0)f(0)f(0),所以f(0)0,再令yx,则f(0)f(x)f(x),所以f(x)f(x),又f(x)的值不恒为零,故f(x)是奇函数而非偶函数【评析】关于函数方程“f(xy)f(x)f(y)”的使用一般有以下两个思路:令x,y为某些特殊的值,如本题解法中,令xy0得到了f(0)0当然,如果令xy1则可以得到f(2)2f(1),等等令x,y具有某种特殊的关系,如本题解法中,令yx得到f(2x)2f(x),在某些情况下也可令y,yx,等等总之,函数方程的使用比较灵活,要根据具体情况作适当处理在不是很熟悉的时候,要有试一试的勇气例4 已知二次函数f(x)x2bxc满足f(1x)f(1x),求b的值,并比较f(1)与f(4)的大小解:因为f(1x)f(1x),所以x1为二次函数图象的对称轴,所以,b2根据对称性,f(1)f(3),又函数在1,)上单调递增,所以f(3)f(4),即f(1)f(4)例5 已知f(x)为奇函数,当x0时,f(x)x22x,(1)求f(1)的值;(2)当x0时,求f(x)的解析式解:(1)因为f(x)为奇函数,所以f(1)f(1)(1221)1(2)方法一:当x0时,x0所以,f(x)f(x)(x)22(x)x22x方法二:设(x,y)是f(x)在x0时图象上一点,则(x,y)一定在f(x)在x0时的图象上所以,y(x)22(x),所以yx22x例6 用函数单调性定义证明,函数yax2bxc(a0)在区间上为增函数证明:设,且x1x2f(x2)f(x1)(ax22bx2c)(ax12bx1c)a(x22x12)b(x2x1)a(x2x1)(x2x1)b(x2x1)(x2x1)a(x1x2)b因为x1x2,所以x2x10,又因为,所以,所以f(x2)f(x1)0,函数yax2bxc(a0)在区间上为增函数例7 已知函数f(x)是定义域为R的单调增函数(1)比较f(a22)与f(2a)的大小;(2)若f(a2)f(a6),求实数a的取值范围解:(1)因为a222a(a1)210,所以a222a,由已知,f(x)是单调增函数,所以f(a22)f(2a)(2)因为f(x)是单调增函数,且f(a2)f(a6),所以a2a6,解得a3或a2【评析】回顾单调增函数的定义,在x1,x2为区间任意两个值的前提下,有三个重要的问题:xx2x1的符号;yf(x2)f(x1)的符号;函数yf(x)在区间上是增还是减由定义可知:对于任取的x1,x2,若x2x1,且f(x2)f(x1),则函数yf(x)在区间上是增函数;不仅如此,若x2x1,且函数yf(x)在区间上是增函数,则f(x2)f(x1);若f(x2)f(x1),且函数yf(x)在区间上是增函数,则x2x1;于是,我们可以清晰地看到,函数的单调性与不等式有着天然的联系请结合例5例6体会这一点函数的单调性是极为重要的函数性质,其与其他问题的联系、自身的应用都很广泛,在复习中要予以充分注意例8 设f(x)是定义域为(,0)(0,)的奇函数,且它在区间(,0)上是减函数(1)试比较f(2)与f(3)的大小;(2)若mn0,且mn0,求证:f(m)f(n)0解:(1)因为f(x)是奇函数,所以f(3)f(3),又f(x)在区间(,0)上是减函数,所以f(3)f(2),即f(3)f(2)(2)因为mn0,所以m,n异号,不妨设m0,n0,因为mn0,所以nm,因为n,m(,0),nm,f(x)在区间(,0)上是减函数,所以f(n)f(m),因为f(x)是奇函数,所以f(m)f(m),所以f(n)f(m),即f(m)f(n)0例9 函数f(x)是周期为2的周期函数,且f(x)x2,x1,1(1)求f(7.5)的值;(2)求f(x)在区间2n1,2n1上的解析式解:(1)因为函数f(x)是周期为2的周期函数,所以f(x2k)f(x),kZ所以f(7.5)f(0.58)f(0.5)(2)设x2n1,2n1,则x2n1,1所以f(x)f(x2n)(x2n)2,x2n1,2n1练习22一、选择题1下列函数中,在(1,)上为增函数的是( )(A)yx24x(B)yx(C)(D)yx22x2下列判断正确的是( )(A)定义在R上的函数f(x),若f(1)f(1),且f(2)f(2),则f(x)是偶函数(B)定义在R上的函数f(x)满足f(2)f(1),则f(x)在R上不是减函数(C)定义在R上的函数f(x)在区间(,0上是减函数,在区间(0,)上也是减函数,则f(x)在R上是减函数(D)不存在既是奇函数又是偶函数的函数3已知函数f(x)是R上的奇函数,并且是周期为3的周期函数,又知f(1)2则f(2)( )(A)2(B)2(C)1(D)14设f(x)是R上的任意函数,则下列叙述正确的是( )(A)f(x)f(x)是奇函数(B)f(x)f(x)是奇函数(C)f(x)f(x)是偶函数(D)f(x)f(x)是偶函数二、填空题5若函数f(x)4x2mx5在区间2,)是增函数,则m的取值范围是_;f(1)的取值范围是_6已知函数f(x)是定义在(,)上的偶函数当x(,0)时,f(x)xx4,则当x(0,)时,f(x)_7设函数为奇函数,则实数a_8已知函数f(x)x2cosx,对于上的任意x1,x2,有如下条件:x1x2; x1x2其中能使f(x1)f(x2)恒成立的条件序号是_三、解答题9已知函数f(x)是单调减函数(1)若a0,比较与f(3)的大小;(2)若f(a1)f(3),求实数a的取值范围10已知函数(1)判断函数f(x)的奇偶性;(2)当a1时,证明函数f(x)在区间2,)上是增函数11定义在(0,)上的函数f(x)满足f(2)1;f(xy)f(x)f(y),其中x,y为任意正实数,任意正实数x,y满足xy时,(xy)f(x)f(y)0恒成立(1)求f(1),f(4)的值;(2)试判断函数f(x)的单调性;(3)如果f(x)f(x3)2,试求x的取值范围23 基本初等函数()本节复习的基本初等函数包括:一次函数、二次函数、指数函数、对数函数和幂函数,三角函数在三角部分复习函数的图象上直观地反映着函数的性质,学习函数的“捷径”是熟知函数的图象熟知函数图象包括三个方面:作图,读图,用图掌握初等函数一般包括以下一些内容:首先是函数的定义,之后是函数的图象和性质函数的性质一般包括定义域,值域,图象特征,单调性,奇偶性,周期性,零点、最值以及值的变化特点等,研究和记忆函数性质的时候应全面考虑函数的定义(通常情况下是解析式)决定着函数的性质,我们可以通过解析式研究函数的性质,也可以通过解析式画出函数的图象,进而直观的发现函数的性质【知识要点】1一次函数:ykxb(k0)(1)定义域为R,值域为R;(2)图象如图所示,为一条直线;(3)k0时,函数为增函数,k0时,函数为减函数;(4)当且仅当b0时一次函数是奇函数一次函数不可能是偶函数(5)函数ykxb的零点为2二次函数:yax2bxc(a0)通过配方,函数的解析式可以变形为(1)定义域为R:当a0时,值域为;当a0时,值域为;(2)图象为抛物线,抛物线的对称轴为,顶点坐标为当a0时,抛物线开口向上;当a0时,抛物线开口向下(3)当a0时,是减区间,是增区间;当a0时,是增区间,是减区间(4)当且仅当b0时,二次函数是偶函数;二次函数不可能是奇函数(5)当判别式b24ac0时,函数有两个变号零点;当判别式b24ac0时,函数有一个不变号零点;当判别式b24ac0时,函数没有零点3指数函数yax(a0且a1)(1)定义域为R;值域为(0,)(2)a1时,指数函数为增函数;0a1时,指数函数为减函数;(3)函数图象如图所示不具有奇偶性、周期性,也没有零点4对数函数ylogax(a0且a1),对数函数ylogax与指数函数yax互为反函数(1)定义域为(0,);值域为R(2)a1时,对数函数为增函数;0a1时,对数函数为减函数;(3)函数图象如图所示不具有奇偶性、周期性,(4)函数的零点为15幂函数yx(R)幂函数随着的取值不同,它们的定义域、性质和图象也不尽相同,但它们有一些共同的性质:(1)所有的幂函数在(0,)都有定义,并且图象都通过点(1,1);(2)如果0,则幂函数的图象通过原点,并且在区间0,)上是增函数;(3)如果0,则幂函数在区间(0,)上是减函数,在第一象限内,当x从右边趋向于原点时,图象在y轴右方无限地接近y轴,当x趋于时,图象在x轴上方无限地接近x轴要注意:因为所有的幂函数在(0,)都有定义,并且当x(0,)时,x0,所以所有的幂函数yx(R)在第一象限都有图象根据幂函数的共同性质,可以比较容易的画出一个幂函数在第一象限的图象,再根据幂函数的定义域和奇偶性,我们可以得到这个幂函数在其他象限的图象,这样就能够得到这个幂函数的大致图象6指数与对数(1)如果存在实数x,使得xna (aR,n1,nN),则x叫做a的n次方根负数没有偶次方根;(2)分数指数幂,;n,mN*,且为既约分数),且为既约分数)(3)幂的运算性质amanamn,(am)namn,(ab)nanbn,a01(a0)(4)一般地,对于指数式abN,我们把“b叫做以a为底N的对数”记为logaN,即blogaN(a0,且a1)(5)对数恒等式:N(6)对数的性质:零和负数没有对数(对数的真数必须大于零!);底的对数是1,1的对数是0(7)对数的运算法则及换底公式:;.(其中a0且a1,b0且b1,M0,N0).【复习要求】1掌握基本初等函数的概念,图象和性质,能运用这些知识解决有关的问题;其中幂函数主要掌握yx,yx2,yx3,这五个具体的幂函数的图象与性质2准确、熟练的掌握指数、对数运算;3整体把握函数的图象和性质,解决与函数有关的综合问题【例题分析】例1 化简下列各式:(1);(2);(3);(4)log2log3(log464);(5)解:(1)(2)(3)(4)log2log3(log464)log2log3(log443)log2log33log210(5) 【评析】指数、对数运算是两种重要的运算,在运算过程中公式、法则的准确、灵活使用是关键例2 已知二次函数f(x)满足f(2)1,f(1)1,且f(x)的最大值为8,试确定f(x)的解析式解:解法一设f(x)ax2bxc(a0),依题意解之得所以所求二次函数为f(x)4x24x7解法二f(x)a(xh)2k(a0),为f(2)1,f(1)1,所以抛物线的对称轴为,又f(x)的最大值为8,所以.因为(1,1)点在抛物线上,所以,解得a4所以所求二次函数为.例3 (1)如果二次函数f(x)x2(a2)x5在区间(2,)上是增函数,则a的取值范围是_(2)二次函数yax24xa3的最大值恒为负,则a的取值范围是_(3)函数f(x)x2bxc对于任意tR均有f(2t)f(2t),则f(1),f(2),f(4)的大小关系是_解:(1)由于此抛物线开口向上,且在(2,)上是增函数,画简图可知此抛物线对称轴或与直线x2重合,或位于直线x2的左侧,于是有,解之得.(2)分析二次函数图象可知,二次函数最大值恒为负的充要条件是“二次项系数a0,且判别式0”,即,解得a(,1)(3)因为对于任意tR均有f(2t)f(2t),所以抛物线对称轴为x2,又抛物线开口向上,做出函数图象简图可得f(2)f(1)f(4)例4 已知函数f(x)mx2(m3)x1的图象与x轴的交点至少有一个在原点的右侧,求实数m的范围解:当m0时,f(x)3x1,其图象与x轴的交点为,符合题意;当m0时,注意到f(0)1,又抛物线开口向下,所以抛物线与x轴的两个交点必在原点两侧所以m0符合题意;当m0时,注意到f(0)1,又抛物线开口向上,所以抛物线与x轴的两个交点必在原点同侧(如果存在),所以若满足题意,则解得0m1综上,m(,1【评析】在高中阶段,凡“二次”皆重点,二次函数,一元二次方程,一元二次不等式,二次曲线都应着重去理解、掌握例2、3、4 三个题目充分体现了数形结合思想及运动变化思想的运用这两种数学思想在函数问题的解决中被普遍使用例5 (1)当a0时,函数yaxb与ybax的图象只可能是( )(2)函数ylogax,ylogbx,ylogcx,ylogdx的图象分别是图中的、,则a,b,c,d的大小关系是_【分析】(1)在选项(A)中,由yaxb图象可知a0,b1,所以bab01(根据以为底的指数函数的性质),所以ybax(ba)x应为减函数在选项(B)中,由yaxb图象可知a0,b1,所以bab01,所以ybax(ba)x应为增函数在选项(C)中,由yaxb图象可知a0,0b1,所以bab01,所以ybax(ba)x应为减函数与图形提供的信息相符在选项(D)中,由yaxb图象可知a0,0b1,所以bab01,所以ybax(ba)x应为增函数综上,选C(2)如图,作直线y1与函数ylogax,ylogbx,ylogcx,ylogdx的图象依次交于A,B,C,D四点,则A,B,C,D四点的横坐标分别为a,b,c,d,显然,cdab【评析】在本题的解决过程中,对函数图象的深入分析起到了至关重要的作用这里,对基本初等函数图象的熟悉是前提,对图象的形态的进一步研究与关注是解决深层问题要重点学习的,例4中“注意到f(0)1”,例5中“作直线y1”就是具体的表现,没有“熟悉”和“深入的研究”是不可能“注意到”的,也作不出“直线y1”例6 已知幂函数(1)若f(x)为偶函数,且在(0,)上是增函数,求f(x)的解析式;(2)若f(x)在(0,)上是减函数,求k的取值范围解:(1)因为f(x)在(0,)上是增函数,所以,解得1k3,因为kZ,所以k0,1,2,又因为f(x)为偶函数,所以k1,f(x)x2(2)因为f(x)在(0,)上是减函数,所以,解得k1,或k3(kZ)例7 比较下列各小题中各数的大小(1);(2)lg2与lg(x2x3);(3)0.50.2与0.20.5;(4);(5);(6)amam与anan(a0,a1,mn0)【分析】(1)函数ylog2x在区间(0,)上是增函数,所以log20.6log210,函数ylog0.6x在区间(0,)上是减函数,所以所以.(2)由于,所以lg2lg(x2x3)(3)利用幂函数和指数函数单调性0.50.20.20.20.20.5(4)因为.根据不等式的性质有(5)因为比较与log32,只需比较与log32,因为ylog3x是增函数,所以只需比较与2的大小,因为,所以,所以,综上,(6),当a1时,因为mn0,aman,amn1,所以amamanan;当0a1时,因为mn0,aman,amn1,所以amamanan综上,amamanan例8 已知a2,b2,比较ab,ab的大小【分析】方法一(作商比较法),又a2,b2,所以,所以,所以abab方法二(作差比较法),因为a2,b2,所以2a0,2b0,所以abab0,即abab方法三(构造函数)令yf(a)abab(1b)ab,将y看作是关于a的一次函数,因为1b0,所以此函数为减函数,又a(2,),y最大f(2)(1b)2b2b0,所以abab0,即abab【评析】两个数比较大小的基本思路:如果直接比较,可以考虑用比较法(包括“作差比较法”与“作商比较法”,如例8的方法一与方法二),或者利用函数的单调性来比较(如例7(1)(2)(3),例8的方法三)如果用间接的方法可以尝试对要比较的两数进行适当的变形,转化成对另两个数的比较,也可以考虑借助中间量来比较(如例7(4)(5)(6)例9 若log2(x1)2,则x的取值范围是_解:log2(x1)2,即log2(x1)log24,根据函数ylog2x的单调性,可得x14,所以x5,结合x10,所以x的取值范围是1x5例10 已知A,B为函数ylog8x的图象上两点,分别过A,B作y轴的平行线与函数ylog2x的图象交于C,D两点(1)如果A,B两点的连线经过原