二次函数在闭区间上的最值讲义--高一上学期数学人教A版(2019)必修第一册.docx
-
资源ID:24323207
资源大小:237.22KB
全文页数:5页
- 资源格式: DOCX
下载积分:16金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
二次函数在闭区间上的最值讲义--高一上学期数学人教A版(2019)必修第一册.docx
二次函数在闭区间上的最值一、复习回顾初中阶段我们学了二次函数的哪些知识?1、 二次函数的概念;2、二次函数的解析式有三种形式: 一般 两根 三顶点;3、二次函数的图像画法、性质特征;函数二次函数图像a>0a<0 y 0 x y 0 x 性质(1)抛物线开口向上,并向上无限延伸;(2)对称轴是x=,顶点坐标是;(3)在对称轴的左侧,即当x<时,y随x的增大而减小;在对称轴的右侧,即当x>时,y随x的增大而增大, (4)抛物线有最低点,当x=时,y有最小值,(1)抛物线开口向下,并向下无限延伸;(2)对称轴是x=,顶点坐标是(,);(3)在对称轴的左侧,即当x<时,y随x的增大而增大;在对称轴的右侧,即当x>时,y随x的增大而减小,简记左增右减;(4)抛物线有最高点,当x=时,y有最大值,练:求二次函数的最小值。思考:求函数在区间0,3上的最值?函数在区间上的最小值?函数在上的最大值。二、二次函数在闭区间上的最值研究。(一)、正向型是指已知二次函数和定义域区间,求其最值。对称轴与定义域区间的相互位置关系的讨论往往成为解决这类问题的关键。此类问题包括以下四种情形:(1)轴定,区间定;(2)轴定,区间变;(3)轴变,区间定;(4)轴变,区间变。1. 轴定区间定二次函数是给定的,给出的定义域区间也是固定的,我们称这种情况是“定二次函数在定区间上的最值”。例1. 函数在区间0,3上的最大值是_,最小值是_。解:函数是定义在区间0,3上的二次函数,其对称轴方程是,顶点坐标为(2,2),且其图象开口向下,显然其对称轴在0,3上,如图1所示。函数的最大值为,最小值为。图12、轴定区间变二次函数是确定的,但它的定义域区间是随参数而变化的,我们称这种情况是“定函数在动区间上的最值”。例2. 如果函数定义在区间上,求的最小值。解:函数,其对称轴方程为,顶点坐标为(1,1),图象开口向上。如图1所示,若顶点横坐标在区间左侧时,有,此时,当时,函数取得最小值。图1如图2所示,若顶点横坐标在区间上时,有,即。当时,函数取得最小值。图2如图3所示,若顶点横坐标在区间右侧时,有,即。当时,函数取得最小值综上讨论,图33、轴变区间定二次函数随着参数的变化而变化,即其图象是运动的,但定义域区间是固定的,我们称这种情况是“动二次函数在定区间上的最值”。例3. 求函数在上的最大值。解: 函数图象的对称轴方程为,应分,即,和这三种情形讨论,下列三图分别为(1);由图可知(2);由图可知(3) 时;由图可知;即通过以上几个问题的分析可知,不管是哪种形式的二次函数的最值总在对称轴的位置或定义域的两个端点处取得,而我们要知道二次函数最值是在这三个位置中的哪个位置,所要做的工作就是去分析图像,讨论对称轴与定义域的位置关系。以上问题都是利用解析式和区间求最值得问题,我们称之为正向型问题。(二)、逆向型是指已知二次函数在某区间上的最值,求函数或区间中参数的取值。例4. 已知函数在区间上的最大值为4,求实数a的值。 解:(1)若,不符合题意。(2)若则由,得(3)若时,则由,得综上知或例5. 已知二次函数在区间上的最大值为3,求实数a的值。这是一个逆向最值问题,若从求最值入手,需分与两大类五种情形讨论,过程繁琐不堪。若注意到最大值总是在闭区间的端点或抛物线的顶点处取到,因此先计算这些点的函数值,再检验其真假,过程就简明多了。具体解法为:(1)令,得此时抛物线开口向下,对称轴方程为,且,故不合题意;(2)令,得此时抛物线开口向上,对称轴方程为,闭区间的右端点距离对称轴较远,故符合题意;(3)若,得此时抛物线开口向下,对称轴方程为,闭区间的右端点距离对称轴较远,故符合题意。综上,或解后反思:若函数图象的开口方向、对称轴均不确定,且动区间所含参数与确定函数的参数一致,可采用先斩后奏的方法,利用二次函数在闭区间上的最值只可能在区间端点、顶点处取得,不妨令之为最值,验证参数的资格,进行取舍,从而避开繁难的分类讨论,使解题过程简洁、明了。三、课后小结: 影响二次函数在闭区间上的最值主要有三个因素:抛物线的开口方向、对称轴和区间的位置。这是我们研究二次函数在闭区间上最值得关键。按函数对称轴与给定区间的相对位置关系的讨论。一般分为:对称轴在区间的左边,中间,右边三种情况.设,求在上的最大值与最小值。分析:将配方,得顶点为、对称轴为 当时,它的图象是开口向上的抛物线,数形结合可得在m,n上的最值:(1)当时,的最小值是的最大值是中的较大者。(2)当时若,由在上是增函数则的最小值是,最大值是若,由在上是减函数则的最大值是,最小值是 当时,可类比得结论。四、练习. 1、已知,求函数的最值。2、 已知,当时,求的最大值3、已知,且,求函数的最值。4、求在区间-1,2上的最大值。5、已知函数在区间上的最小值是3最大值是3,求,的值。学科网(北京)股份有限公司