欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    第4讲 不等式的性质、基本不等式(练习)--高考数学一轮复习.docx

    • 资源ID:24329339       资源大小:61.19KB        全文页数:8页
    • 资源格式: DOCX        下载积分:14金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要14金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    第4讲 不等式的性质、基本不等式(练习)--高考数学一轮复习.docx

    第4讲不等式的性质、基本不等式A组夯基精练一、 单项选择题(选对方法,事半功倍)1. (2021·南京、盐城二模)在流行病学中,基本传染数是指每名感染者平均可传染的人数当基本传染数高于1时,每个感染者平均会感染一个以上的人,从而导致感染这种疾病的人数呈指数级增长. 当基本传染数持续低于1时,疫情才可能逐渐消散. 广泛接种疫苗可以减少疾病的基本传染数. 假设某种传染病的基本传染数为R0,1个感染者在每个传染期会接触到N个新人,这N人中有V个人接种过疫苗,那么1个感染者新的传染人数为(NV)已知新冠病毒在某地的基本传染数R02.5,为了使1个感染者传染人数不超过1,该地疫苗的接种率至少为()A. 40% B. 50% C. 60% D. 70%2. (2021·常州模拟)下列命题为真命题的是()A. 若a>b,则ac2>bc2 B. 若a<b<0,则a2<ab<b2C. 若c>a>b>0,则< D. 若a>b>c>0,则>3. (2021·三明一模)已知x1,则的最小值是()A. 22 B. 22 C. 2 D. 24. (2021·湖南六校联考)数学里有一种证明方法叫做Proofs without words,也称之为无字证明,一般是指仅用图象语言而无需文字解释就能不证自明的数学命题,由于这种证明方法的特殊性,无字证明被认为比严格的数学证明更为优雅. 现有如图所示图形,在等腰直角三角形ABC中,点O为斜边AB的中点,点D为斜边AB上异于顶点的一个动点,设ADa,BDb,则该图形可以完成的无字证明为()(第4题)A. (a>0,b>0) B. (a>0,b>0)C. (a>0,b>0) D. a2b22(a>0,b>0)二、 多项选择题(练逐项认证,考选确定的)5. (2022·无锡期末)(多选)已知eb<ea<1,则下列结论正确的是()A. a2<b2 B. >2C. ab>b2 D. lga2<lg(ab)6. (2021·扬州模拟)已知x>0,y>0,且2xy2,则下列说法中正确的是()A. xy的最大值为 B. 4x2y2的最大值为2C. 4x2y的最小值为4 D. 的最小值为4三、 填空题(精准计算,整洁表达)7. (2021·莆田二模) 已知x>1,则x的最小值为_8. 已知正实数a,b满足1,则ab的最小值为_;的最小值为_9. (2021· 海门中学)若实数x,y满足x>y>0,且log2xlog2y1,则的最小值是_,的最大值为_四、 解答题(让规范成为一种习惯)10. 若a0,b0,且2ab23ab.(1) 求2ab的最小值;(2) 是否存在a,b,使得a3b34?并说明理由11. (1) 设a,b为正实数,且ab3,求的最小值;(2) 已知x>0,y>1,且xy1,求的最小值B组滚动小练12. (2021·永州一模)已知M,N是R的子集,且MN,则(RN)M等于()A. M B. N C. D. R13. (2021·湖北名校联考)已知非空集合A,B满足以下两个条件:AB1,2,3,4,AB;A的元素个数不是A中的元素,B的元素个数不是B中的元素则有序集合对(A,B)的个数为()A. 1 B. 2 C. 4 D. 614. 已知集合Ax|2<x<4,集合Bx|3m<x<1m(1) 若AB,求实数m的取值范围;(2) 设p:xA,q:xB,若p是q的充分条件,求实数m的取值范围第4讲不等式的性质、基本不等式1. C【解析】 由题意可得12.5N2.5VN60%.2. D【解析】 对于A,当c0时,显然不成立,故A为假命题;对于B,当a3,b2时,满足a<b<0,但a2<ab<b2不满足,故B为假命题;对于C,当c3,a2,b1时,>,不满足,故C为假命题;对于D,由于a>b>c>0,所以>0,即>,故D为真命题3. A【解析】 因为x1,所以x10,所以x1222(当且仅当x1,即x1时,等号成立)4. C【解析】 由图可知,OCAB,OD|OBBD|.在RtOCD中,CD,显然OCCD,即.5. ABD6. ACD【解析】 对于A,xy·2x·y·2,当且仅当2xy时取等号,所以A正确;对于B,4x2y2(2x)2y22·22,当且仅当2xy时取等号,所以B错误;对于C,4x2y22x2y224,当且仅当2xy时取等号,所以C正确;对于D,2224,当且仅当时取等号,所以D正确7. 11【解析】 因为x>1,所以x1>0,所以xx112111,当且仅当x1,即x6时,等号成立8. 425【解析】 由1,即baab,abba11,则(a1)(b1)1,所以a1,b1.因为a,b是正实数,所以ab(ab)2224,当且仅当ab2时等号成立,故ab的最小值为4;因为a1,b1,所以a10,b10,则4913225,当且仅当a,b时等号成立,故的最小值为25.9. 2【解析】 若实数x,y满足x>y>0,且log2xlog2y1,则xy2,则22,当且仅当,即x2,y1时取等号,故的最小值是2.又x>y>0,xy>0,当且仅当xy,即x1,y1时取等号,故的最大值为.10. 【解答】 (1) 由3ab2ab222,得ab2,当且仅当2ab2时等号成立,所以2ab3ab2624,当且仅当2ab2时等号成立,所以2ab的最小值为4.(2) 由(1)知a3b324,当且仅当2ab2,ab时等号成立,因为2ab2,ab不能同时成立,所以不存在a,b,使得a3b34成立11. 【解答】 (1) 因为ab3,令a2m,b1n,所以mnab36,所以am2,bn1,所以mn6.因为mnab36,所以(mn)×(45),当且仅当,即m2n时,取得最小值,所以的最小值为.(2) ,结合xy1可知原式,且××2,当且仅当x3,y2时等号成立,即的最小值为2.(第12题)12. C【解析】 根据条件,用Venn图表示M,N,R如图所示由图可知(RN)M.13. B【解析】 若A中只有1个元素,则B中有3个元素,则1A,3B,即3A,1B,此时有1对;若A中有2个元素,则B中有2个元素,则2A,2B,不符合题意;若A中有3个元素,则B中有1个元素,则3A,1B,即3B,1A,此时有1对综上,有序集合对(A,B)的个数为2.14. 【解答】 (1) 集合Ax|2<x<4,集合Bx|3m<x<1m当B时,显然有AB,此时3m1m,解得m;当B时,要使AB,只需或解得1m<或无解综上,实数m的取值范围是m|m1(2) p:xA,q:xB,若p是q的充分条件,则有AB,所以解得m3,所以实数m的取值范围是m|m3学科网(北京)股份有限公司

    注意事项

    本文(第4讲 不等式的性质、基本不等式(练习)--高考数学一轮复习.docx)为本站会员(ge****by)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开