2008年高考试题——数学理(重庆卷) .doc
绝密启用前2008年普通高等学校招生全国统一考试(重庆卷)数学试题卷(理工农医类)数学试题卷(理工农医类)共5页。满分150分。考试时间120分钟。 注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。2.答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦擦干净后,再选涂其他答案标号。3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。4.所有题目必须在答题卡上作答,在试题卷上答题无效。5.考试结束后,将试题卷和答题卡一并交回。 参考公式:如果事件A、B互斥,那么P(A+B)=P(A)+P(B) 如果事件A、B相互独立,那么P(AB)=P(A)P(B) 如果事件A在一次试验中发生的概率是P,那么n次独立重复试验中恰好发生k次的概率Pn(K)=kmPk(1-P)n-k以R为半径的球的体积V=R3.一、 选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个备选项中,只有一项是符合题目要求的.(1)复数1+=(A)1+2i (B)1-2i(C)-1(D)3(2)设m,n是整数,则“m,n均为偶数”是“m+n是偶数”的(A)充分而不必要条件(B)必要而不充分条件(C)充要条件 (D)既不充分也不必要条件(3)圆O1:x2+y2-2x=0和圆O2:x2+y2-4y=0的位置关系是(A)相离(B)相交(C)外切(D)内切(4)已知函数y=的最大值为M,最小值为m,则的值为(A)(B)(C)(D)(5)已知随机变量服从正态分布N(3,a2),则P( (A)(B)(C)(D)(6)若定义在R上的函数f(x)满足:对任意x1,x2R有f(x1+x2)=f(x1)+f(x2)+1,则下列说法一定正确的是(A)f(x)为奇函数(B)f(x)为偶函数(C) f(x)+1为奇函数(D)f(x)+1为偶函数(7)若过两点P1(-1,2),P2(5,6)的直线与x轴相交于点P,则点P分有向线段所成的比的值为(A)(B) (C) (D) (8)已知双曲线(a0,b0)的一条渐近线为y=kx(k0),离心率e=,则双曲线方程为(A)=1(B) (C)(D) (9)如解(9)图,体积为V的大球内有4个小球,每个小球的球面过大球球心且与大球球面有且只有一个交点,4个小球的球心是以大球球心为中心的正方形的4个顶点.V1为小球相交部分(图中阴影部分)的体积,V2为大球内、小球外的图中黑色部分的体积,则下列关系中正确的是(A)V1=(B) V2=(C)V1> V2 (D)V1< V2(10)函数f(x)=() 的值域是(A)-(B)-1,0 (C)-(D)-二、填空题:本大题共6小题,每小题4分,共24分,把答案填写在答题卡相应位置上(11)设集合U=1,2,3,4,5,A=2,4,B=3,4,5,C=3,4,则(AB)= .(12)已知函数,在点在x=0处连续,则 .(13)已知(a>0) ,则 .(14)设是等差数列an的前n项和,,则= .(15)直线l与圆(a<3)相交于两点A,B,弦AB的中点为(0,1),则直线l的方程为 .(16)某人有4种颜色的灯泡(每种颜色的灯泡足够多),要在如题(16)图所示的6个点A、B、C、A1、B1、C1上各装一个灯泡,要求同一条线段两端的灯泡不同色,则每种颜色的灯泡都至少用一个的安装方法共有 种(用数字作答).三、解答题:本大题共6小题,共76分,解答应写出文字说明、证明过程或演算步骤.(17)(本小题满分13分,()小问6分,()小问7分)设的内角A,B,C的对边分别为a,b,c,且A=,c=3b.求:()的值;()cotB+cot C的值.(18)(本小题满分13分,()小问5分,()小问8分.)甲、乙、丙三人按下面的规则进行乒乓球比赛:第一局由甲、乙参加而丙轮空,以后每一局由前一局的获胜者与轮空者进行比赛,而前一局的失败者轮空.比赛按这种规则一直进行到其中一人连胜两局或打满6局时停止.设在每局中参赛者胜负的概率均为,且各局胜负相互独立.求:() 打满3局比赛还未停止的概率;()比赛停止时已打局数的分别列与期望E.(19)(本小题满分13分,()小问6分,()小问7分.)如题(19)图,在中,B=,AC=,D、E两点分别在AB、AC上.使,DE=3.现将沿DE折成直二角角,求:()异面直线AD与BC的距离;()二面角A-EC-B的大小(用反三角函数表示).(20)(本小题满分13分.()小问5分.()小问8分.)设函数曲线y=f(x)通过点(0,),且在点处的切线垂直于y轴.()用a分别表示b和c;()当bc取得最小值时,求函数的单调区间.(21)(本小题满分12分,()小问5分,()小问7分.)如图(21)图,M(-2,0)和N(2,0)是平面上的两点,动点P满足:()求点P的轨迹方程;()若,求点P的坐标.(22)(本小题满分12分,()小问5分,()小问7分.)设各项均为正数的数列an满足.()若,求,并猜想的值(不需证明);()记对n2恒成立,求a2的值及数列bn的通项公式.2008年普通高等学校招生全国统一考试(重庆卷)数学试题(理工农医类)答案一、选择题:每小题5分,满分50分.(1)A解析:本题考查复数的概念与运算。1+=1+(2)A解析:均为偶数是偶数 则充分; 是偶数则均为偶数或者均为奇数即是偶数均为偶数 则不必要,故选A(3)B解析:本题考查圆的一般方程与标准方程以及两圆位置关系。 ,,(4)C解析:本题考查均值不等式。定义域 ,当且仅当即上式取等号,故最大值为 最小值为 (5)D解析:本题考查正态分布的意义和主要性质。服从正态分布N(3,a2) 则曲线关于对称,(6)C 解析:本题考查函数性质。则令则,所以即(7)A解析:本题考查线段定比分点。设则(8)C解析:本题考查双曲线的几何性质。, 所以(9)D解析:设大球半径为 ,小球半径为 根据题意所以 于是即所以(10)B解析:特殊值法, 则f(x)= 排除A,令得当时时所以矛盾排除C, D二、填空题:每小题4分,满分24分.(11)(12)解析: 又 点在x=0处连续,所以 即 故(13)3解析: (14)-72解析:,(15)x-y+1=0解析:设圆心,直线的斜率为, 弦AB的中点为,的斜率为,则,所以 由点斜式得(16)216 解析:则底面共,;,由分类计数原理得上底面共,由分步类计数原理得共有三、解答题:满分76分.(17)(本小题13分)解:()由余弦定理得故()解法一:由正弦定理和()的结论得故解法二:由余弦定理及()的结论有故同理可得从而(18)(本小题13分)解:令分别表示甲、乙、丙在第k局中获胜.()由独立事件同时发生与互斥事件至少有一个发生的概率公式知,打满3局比赛还未停止的概率为()的所有可能值为2,3,4,5,6,且 故有分布列23456P从而(局).(19)(本小题13分)解法一:()在答(19)图1中,因,故BEBC.又因B90,从而ADDE.在第(19)图2中,因A-DE-B是直二面角,ADDE,故AD底面DBCE,从而ADDB.而DBBC,故DB为异面直线AD与BC的公垂线.下求DB之长.在答(19)图1中,由,得又已知DE=3,从而 因()在第(19)图2中,过D作DFCE,交CE的延长线于F,连接AF.由(1)知,AD底面DBCE,由三垂线定理知AFFC,故AFD为二面角A-BC-B的平面角.在底面DBCE中,DEF=BCE,因此从而在RtDFE中,DE=3,在因此所求二面角A-EC-B的大小为arctan解法二:()同解法一.()如答(19)图3.由()知,以D点为坐标原点,的方向为x、y、z轴的正方向建立空间直角坐标系,则D(0,0,0),A(0,0,4),E(0,3,0).过D作DFCE,交CE的延长线于F,连接AF.设从而 ,有 又由 联立、,解得 因为,故,又因,所以为所求的二面角A-EC-B的平面角.因有所以 因此所求二面角A-EC-B的大小为(20)(本小题13分)解:()因为 又因为曲线通过点(0,2a+3), 故 又曲线在(-1,f(-1))处的切线垂直于y轴,故 即-2a+b=0,因此b=2a. ()由()得 故当时,取得最小值-. 此时有 从而 所以 令,解得 当 当 当 由此可见,函数的单调递减区间为(-,-2)和(2,+);单调递增区间为(-2,2).(21)(本小题12分) 解:()由椭圆的定义,点P的轨迹是以M、N为焦点,长轴长2a=6的椭圆. 因此半焦距c=2,长半轴a=3,从而短半轴b=, 所以椭圆的方程为 ()由得 因为不为椭圆长轴顶点,故P、M、N构成三角形.在PMN中, 将代入,得 故点P在以M、N为焦点,实轴长为的双曲线上. 由()知,点P的坐标又满足,所以 由方程组 解得 即P点坐标为(22)(本小题12分) 解:()因 由此有,故猜想的通项为 ()令 由题设知x1=1且 因式对n=2成立,有 下用反证法证明: 由得 因此数列是首项为,公比为的等比数列.故 又由知 因此是是首项为,公比为-2的等比数列,所以 由-得 对n求和得 由题设知 即不等式22k+1对kN*恒成立.但这是不可能的,矛盾.因此x2,结合式知x2=,因此a2=2*2=将x2=代入式得Sn=2(nN*),所以bn=2Sn=22(nN*)