2022年初三数学知识点整理归纳.docx
2022年初三数学知识点整理归纳 学习的胜利与失败缘由是多方面的,要首先从自己身上找缘由,才能受到鼓舞,找出努力的方向。每一门科目都有自己的学习方法,但其实都是万变不离其中的,数学其实和语文英语一样,也是要记、要背、要练的。下面是我给大家整理的一些初三数学的学问点,希望对大家有所帮助。 初三年级下学期数学学问点 【二次函数的图像与性质】 二次函数的概念:一般地,形如ax2+bx+c=0的函数,叫做二次函数。 这里须要强调:和一元二次方程类似,二次项系数a0,而b,c可以为零.二次函数的定义域是全体实数. 二次函数图像与性质口诀 二次函数抛物线,图象对称是关键; 开口、顶点和交点,它们确定图象限; 开口、大小由a断,c与Y轴来相见,b的符号较特殊,符号与a相关联;顶点位置先找见,Y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见。若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换。 【二次函数的应用】 在马路、桥梁、隧道、城市建设等许多方面都有抛物线型;生产和生活中,有许多“利润”、“用料最少”、“开支最节约”、“线路最短”、“面积”等问题,它们都有可能用到二次函数关系,用到二次函数的最值。 那么解决这类问题的一般步骤是: 第一步:设自变量; 其次步:建立函数解析式; 第三步:确定自变量取值范围; 第四步:依据顶点坐标公式或配方法求出最值(在自变量的取值范围内)。 初三年级数学学问点 【函数的图像与一元二次方程】 1.二次函数y=ax2,y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c(各式中,a0)的图象形态相同,只是位置不同 当h0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到, 当h0时,则向左平行移动|h|个单位得到. 当h0,k0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象; 当h0,k0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象; 当h0,k0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象; 当h0,k0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象; 因此,探讨抛物线y=ax2+bx+c(a0)的图象,通过配方,将一般式化为y=a(x-h)2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清晰了.这给画图象供应了便利. 2.抛物线y=ax2+bx+c(a0)的图象:当a0时,开口向上,当a0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,4ac-b2/4a). 3.抛物线y=ax2+bx+c(a0),若a0,当x-b/2a时,y随x的增大而减小;当x-b/2a时,y随x的增大而增大.若a0,当x-b/2a时,y随x的增大而增大;当x-b/2a时,y随x的增大而减小. 4.抛物线y=ax2+bx+c的图象与坐标轴的交点: (1)图象与y轴肯定相交,交点坐标为(0,c); (2)当=b2-4ac0,图象与x轴交于两点A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax2+bx+c=0 (a0)的两根.这两点间的距离AB=|x?-x?| 当=0.图象与x轴只有一个交点; 当0.图象与x轴没有交点.当a0时,图象落在x轴的上方,x为任何实数时,都有y0;当a0时,图象落在x轴的下方,x为任何实数时,都有y0. 5.抛物线y=ax2+bx+c的最值:假如a0(a0),则当x=-b/2a时,y最小(大)值=(4ac-b2)/4a. 顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值. 6.用待定系数法求二次函数的解析式 (1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式: y=ax2+bx+c(a0). (2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)2+k(a0). (3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x?)(x-x?)(a0). 初三年级数学学问点苏科版 一.学问框架 二.学问概念 1.圆:平面上到定点的距离等于定长的全部点组成的图形叫做圆。定点称为圆心,定长称为半径。 2.圆弧和弦:圆上随意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上随意 意两点的线段叫做弦。经过圆心的弦叫做直径。 3.圆心角和圆周角:顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。 4.内心和外心:过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。 5.扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。 6.圆锥侧面绽开图是一个扇形。这个扇形的半径称为圆锥的母线。 7.圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在O外,POr;P在O上,PO=r;P在O内,PO 8.直线与圆有3种位置关系:无公共点为相离;有两个公共点为相交,这条直线叫做圆的割线;圆与直线有公共点为相切,这条直线叫做圆的切线,这个的公共点叫做切点。 9.两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有公共点的,一圆在另一圆之外叫外切,在之内叫内切;有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。两圆的半径分别为R和r,且Rr,圆心距为P:外离PR+r;外切P=R+r;相交R-r 10.切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线。 11.切线的性质:(1)经过切点垂直于这条半径的直线是圆的切线。(2)经过切点垂直于切线的直线必经过圆心。(3)圆的切线垂直于经过切点的半径。 12.垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。 13.有关定理: 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等. 在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径. 14.圆的计算公式1.圆的周长C=2r=d2.圆的面积S=r2;3.扇形弧长l=nr/180 15.扇形面积S=(R2-r2)5.圆锥侧面积S=rl 初三数学学问点整理归纳第6页 共6页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页