欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022年一次函数教案+例题+习题+答案 .pdf

    • 资源ID:24660058       资源大小:496.11KB        全文页数:13页
    • 资源格式: PDF        下载积分:4.3金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要4.3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022年一次函数教案+例题+习题+答案 .pdf

    一次函数一、知识回顾1.函数的定义: 一般地,在一个变化过程中. 如果有两个变量 x 与 y,并且对于x 的每一个确定的值, y 都有唯一确定的值与其对应,那么我们就说 x 是自变量, y 是 x 的函数,如果当 x=a 时 y=b,那么 b 叫做当自变量为a 时的函数值。(练一练 1:函数的判断)可简单记忆为:“当其中一个变量x 随便取定一个值时,另一个变量y 都有唯一确定的值与之相对应”。表示方法 :(1)解析式法:用来表示函数关系的等式叫做函数关系式,也称函数的解析式。(2)列表法:函数关系用一个表格表达出来的方法。(3)图像法:用图象表达两个变量之间的关系。2. 对于函数的意义,应从以下几个方面去理解:(1)函数不是数,而是两个变量之间一种对应的关系;(2)对于变量x 允许取的每一个值,集合在一起组成了x 的取值范围。(3)判断两个变量之间是否有函数关系不仅要看它们之间是否有关系式,还要看对于x 允许取的每一个值, y 是否都有唯一确定的值与它相对应。(4)两个函数是 同一函数至少具备两个条件:函数关系式相同(或变形后相同);自变量 x 的取值范围相同。否则,就不是相同的函数。而其中函数关系式相同与否比较容易注意到,自变量x 的取值范围有时容易忽视,这点应注意。(练一练 2:求自变量x 的取值范围)3. 区分函数与函数值:一个函数可能有许多不同的函数值,例如当时,函数的函数值等于;当时,函数的函数值等于。4. 函数的图像: 如果把自变量与函数的每对对应值分别作为点的横、纵坐标, 那么坐标平面内由这些点组成的图形,就是这个函数的图象。注:函数的解析式是一个二元方程,这个方程的解分别是这个函数图象上点的横坐标、纵坐标;函数图象的画法:列表、描点、连线。练一练 1. 判断下列关系式和图象中,其中y 是否是 x 的函数 ? (1)(2)名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 1 页,共 13 页 - - - - - - - - - (3)(4) (5) 解:(1), y 是 x 的函数,因为根据函数定义,对每一个x 的可取值都存在唯一确定的y 值与之相对应。同样根据函数的定义可验证,y 不是 x 的函数(2)只有第二个关系式y 不是 x的函数,其它三个关系式y 都是 x 的函数,理由同上;(3)y 是 x 的函数,理由同上;(4)y 是 x 的函数,理由同上;(5)y 不是 x 的函数,因为由图可以看出,有许多x 值都与两个y 值相对应。练一练 2. 求下列函数中自变量x的取值范围。(1);( 2);( 3)。思路点拨: ( 1)要使分式有意义,则分母,所以;( 2)要使被开方数有意义,则,所以;( 3)分母且,则有。解: (1)自变量的取值范围是的实数;( 2)自变量的取值范围是;( 3)自变量的取值范围是。总结升华:自变量的取值范围必须使整个解析式有意义。名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 2 页,共 13 页 - - - - - - - - - 练一练 3:一辆汽车由A地驶向相距240 千米的B地,它的平均速度为30 千米时,求汽车距B地的路程s(千米)与行驶时间t(时)之间的函数关系式,并画出这个函数图象。思路点拨 :路程 =速度时间解:由题意可知s=240-30t(0t 8)列表:t0 2 4 8 s240 180 120 0 画函数图象如图所示总结升华 :画图象前先列表,令t为某值,代入函数式后可求出相应函数值函数的三种表示方法 。二、知识要点:1. 一次函数与正比例函数的概念(1)形如 ykxb( k,b 是常数, k0) ,那么 y 叫做 x 的一次函数 . (2)形如 ykx(k 是常数, k0) ,那么 y 叫做 x 的正比例函数. 注:一次函数ykx b(k0)中,当b0 时,就成了正比例函数,所以正比例函数是一次函数的特例,但一次函数不一定是正比例函数. (例 1:区别一次函数与正比例函数)例 1. 下列函数中,哪些是一次函数,哪些是正比例函数?(1)yx2(2)y 5x2(3)y31( 4)y3x21(5)yx33(6)y3(x 1) (7) y3x2x(23x) 1. 分析: 关键看给出的解析式能否化为ykxb( k、b 为常数, k0)的形式,若其中b0 时,就是正比例函数. 解: (1) 、 (5) 、 (6) 、 (7)是一次函数,其中(1)也是正比例函数. 评析: 判断一个函数是不是一次函数,首先应对式子进行化简,然后看自变量是否在分母中,是否在根号里,次数是否为1. 2. 正比例函数ykx( k0)的图象和性质(1)正比例函数ykx(k0)的图象是过点(0, 0)与( 1,k)的一条直线. 在图 1中画出 y2x 的图象 . (2)正比例函数ykx(k0)的图象和性质. 如图 2,k0 时, y 随 x 的增大而增大;如图 3,k0 时, y 随 x 的增大而减小. 名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 3 页,共 13 页 - - - - - - - - - 1 2 3 4 5-1-2-3-4-5-1-2-3-4-512345图13. 一次函数的图象和性质(1)一次函数的图象一次函数的图象是一条直线,因此一次函数ykx b 的图象也称为直线y kx b. 说明:一次函数的图象是与坐标轴不平行的一条直线,其中正比例函数的图象是过原点的直线 . 一次函数的图象是一条直线,但直线不一定是一次函数的图象. 如 xa,yb 分别是与 y 轴、 x 轴平行的直线,就不是一次函数的图象. (2)一次函数的图象的画法:作图时通常取两点(0,b) 、 (1,k b)连直线 ;(3)一次函数的图象和性质如图 4,k0,b0 时,图象经过第一、二、三象限,y 随 x 的增大而增大;如图 5,k0,b0 时,图象经过第一、三、四象限,y 随 x 的增大而增大;如图 6,k0,b0 时,图象经过第一、二、四象限,y 随 x 的增大而减小;如图 7,k0,b0 时,图象经过第二、三、四象限,y 随 x 的增大而减小 . 例 2.(1) (2008 年福州)一次函数y2x1 的图象大致是()名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 4 页,共 13 页 - - - - - - - - - (2) (2008 年湖南郴州)一次函数y x1 不经过的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限(3)已知一次函数ykxb,y 随 x 的增大而减小,且kb 0,则在直角坐标系内它的大致图象是()分析: (1)因为 k2,k0,所以直线y2x1 呈上升趋势,又因为b 1,b0,所以直线与y 轴交点在原点的下方,所以正确选项是B. (2)可以判断直线y x 1经过哪几个象限,根据k 1 0,b 10,得此直线经过二、三、四象限,所以不经过第一象限 . (3)在 y kxb 中, y 随 x 的增大而减小,说明k0,从而图象呈下降趋势,而kb 0,则 b0,说明交于y 轴的正半轴 . 应选 A. 解: (1)B(2)A(3) A 评析: 直线 ykxb 的位置由k 和 b 的符号确定, k 决定直线的上升趋势和下降趋势,可形象地称为“撇”和“捺”,b 是直线与y 轴交点的纵坐标,当k0 时, y 随 x 的增大而增大,函数图象为“撇” ;当 k0 时, y 随 x 的增大而减小,函数图象为“捺”,当 b0 时,函数图象与y 轴正半轴相交;当b0 时,函数图象经过原点;当b0 时,函数图象与y 轴交于负半轴,我们可以综合k、b 的符号来判断图象的位置. 4. 一次函数 ykxb 与正比例函数 ykx 的图象的 关系:ykxb 的图象由ykx(k0)的图象 平移 得到 .:( 1).当 b0 时,ykx(k0)的图象沿y 轴向上平移b 个单位便得到ykxb(k 0,b0)的图象;( 2).当 b0 时, y kx(k0)的图象沿y 轴向下平移 b个单位便得到ykxb(k0,b3x+10当自变量x 为何值时函数y=2x-4 的值大于 0?在问题 中,不等式5x+63x+10 可以转化为2x-40 ,解这个不等式得x2解问题 就是要解不等式2x-40 ,得出 x2 时函数 y=2x-4 的值大于0因此这两个问题实际上是同一个问题那么, 是不是所有的一元一次不等式都可转化为一次函数的相关问题呢?它在函数图象上的表现是什么?如何通过函数图象来求解一元一次不等式?先观察函数y=2x-4 的图象可 以 看 出 : 当x2时 , 直 线y=2x-4上 的 点 全 在x轴 上 方 , 即 这 时y=2x-40 由此可知,通过函数图象也可求得不等式的解为x2由上面两个问题的关系,我们能得到“解不等式ax+b0”与“ 求自变量x?在什么范围内,一次函数y=ax+b 的值大于0”之间的关系,实质上是同一个问题结论: 由于任何一元一次不等式都可以转化的ax+b0 或 ax+b0(a、b 为常数, a0)的形式,所以解一元一次不等式可以看作:当一次函数值大于(或小于)0 时, ?求自变量相应的取值范围例 7. 用画函数图象的方法解不等式5x+42x+10方法一 :原不等式可以化为3x-60 ,画出直线y=3x-6 的图象,可以看出,当x2 时这条直线上的点在x 轴的下方即这时y=3x-60 ,所以不等式的解集为:x2 时,对于同一个x,直线 y=5x+4?上的点在直线y=2x+10 上的相应点的下方,这时5x+42x+10,?所以不等式的解集为:x2以上两种方法其实都是把解不等式转化为比较直线上点的位置的高低7.用一次函数解决二元一次方程(组)(1).探究一次函数与二元一次方程的关系:. 填空:二元一次方程358xy+=可以转化为y =思考:、直线3855yx= -+上任意一点(),x y一定是方程358xy+=的解吗?、是否任意的二元一次方程都可以转化为这种一次函数的形式?、是否直线上任意一点的坐标都是它所对应的二元一次方程的解?(2)探究一次函数与二元一次方程组的关系:(1)在同一坐标系中画出一次函数3855yx= -+和21yx=-的图象, 观察两直线的交点坐标是否是方程组35821xyxy?=?-=?的解?并探索: 是否任意两个一次函数的交点坐标都是它们所对应的二元一次方程组的解?归纳一 :从“形”的角度看,解方程组相当于确定两条直线交点的坐标(2)当自变量x取何值时, 函数3855yx= -+与21yx=-的值相等?这个函数值是什么?这一问题与解方程组35821xyxy?=?-=?是同一问题吗?归纳二 :从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值。例 7:我市一家电信公司给顾客提供两种上网收费方式:方式以每分.元的价格按上网时间计费;方式除收月基费20 元外再以每分0 .05 元的价格按上网时间计费。如何选择收费方式能使上网者更合算?解 法 : 设 上 网 时 间 为x分 , 若 按 方 式 则 收0.1yx=元 ; 若 按 方 式 则 收0.0520yx=+元。然后在同一坐标系中分别画出这两个函数的图象,计算出交点坐标(400, 40),结合图象,利用直线上点位置的高低直观地比较函数值的大小,得到当一个月内上网时间少于400 分时,选择方式A 省钱;当上网时间等于400 分时,选择方式A、B没有区别;当上网时间多于400 分时,选择方式B 省钱。解法 2: 设上网时间为x分,方式 B 与方式 A 两种计费的差额为y元,得到一次函数:名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 9 页,共 13 页 - - - - - - - - - (0.0520)0.1yxx=+-,即0.0520yx= -+,然后画出函数的图象,计算出直线与x轴的交点坐标,类似地用点位置的高低直观地找到答案。试一试 :画出题设中一次函数的图像?注意:所画的函数图象都是射线。8.一次函数在实际生活中的应用例 8小芳以 200 米分的速度起跑后,先匀加速跑5 分钟,每分提高速度20 米分,又匀速跑10 分钟试写出这段时间里她跑步速度y(米分)随跑步时间x(分)变化的函数关系式,并画出图象分析:本题y 随 x 变化的规律分成两段:前5 分钟与后10 分钟写 y 随 x?变化函数关系式时要分成两部分画图象时也要分成两段来画,且要注意各自变量的取值范围解: y= 20200(05)300(515)xxx我们把这种函数叫做分段函数 在解决分析函数问题时,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际【方法总结】1. 牢牢把握一次函数的性质,会用待定系数法求一次函数的解析式. 2. 在解决与一次函数的性质有关的题目时,注意数形结合思想的使用. 【模拟试题】(答题时间: 40 分钟)一. 选择题1. 若正比例函数y( 4m3)x 的图像上有两点A(x1,y1) ,B(x2,y2) ,且 x1x2,y1y2,则 m 的取值范围是()A. m34B. m34C. m0 D. m0 2. (2008 年广州)一次函数y3x4 的图象不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 对于一次函数y (2m3) xm, 函数值 y 随 x 的增大而减小, 则 m 的取值范围是 ()A. m0 B. m32C. m32D. 32m0 4. (2008 年陕西)如图,直线AB 对应的函数表达式是()A. y32x3 B. y32x3 C. y23x3 D. y23x3 名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 10 页,共 13 页 - - - - - - - - - 5. (2007 年福州)已知一次函数y( a1)xb 的图象如图所示,那么a 的取值范围是()A. a1 B. a1 C. a0 D. a0 *6. (2007 年上海)如果一次函数ykx b 的图象经过第一象限,且与y 轴负半轴相交,那么()A. k 0,b0 B. k0,b0 C. k0,b0 D. k0,b0 二. 填空题7. (2008 年河南)图象经过(1,2)的正比例函数的表达式为_. 8. 如果一次函数y( m1)x( n2)的图象不经过第一象限,则m 的取值范围是_,n 的取值范围是_. 9. 已知一次函数y3x6,它的图象与坐标轴围成的三角形的面积为_. 10.(2006 年安徽)一次函数的图象过点(1, 0) ,且函数值随着自变量的增大而减小,写出一个符合这个条件的一次函数解析式:_. 三. 解答题13. ( 2008 年北京)如图,已知直线ykx3 经过点 M,求此直线与x 轴, y 轴的交点坐标 . *14. 已知一次函数y( 2k1)x( 32k) ,y 随 x 的增大而减小. 求实数k 的取值范围,并确定此时直线过哪几个象限. 四. 实际应用题*15. 将长为 30cm,宽为10cm 的长方形白纸按如图所示的方法粘合起来,粘合部分的宽度为 3cm. (1)求 5 张白纸粘合后的长度;名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 11 页,共 13 页 - - - - - - - - - 3cm30cm(2)设 x 张白纸粘合后的总长度为ycm,写出 y 与 x 之间的函数关系式,并求当 x 20时 y 的值 . *16. 观察如图所示的图象,并根据你所获得的信息回答问题. (1)折线 OAB 表示某个实际问题的函数图象,请你编写一道符合图象意义的应用题;(2)根据你所给出的应用题分别指出x 轴、 y 轴所表示的意义,并写出A、B 两点的坐标;(3)求出图象AB 的函数解析式,并注明自变量x 的取值范围 . 名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 12 页,共 13 页 - - - - - - - - - 【试题答案】一. 选择题1. A 2. B 3. B 4. A 5. A 6. B 二. 填空题7. y2x8. m 1,n2 11. 6 12. y x1 等三. 解答题13. 直线与 x 轴的交点坐标为(32,0) ,与 y 轴的交点坐标为(0, 3)14. 解: 2k10,即 k12,当 32k0 时, k32(不可能),当 32k0 时, k32,故 k12时,直线过第一、二、四象限. 四. 实际应用题15. ( 1)138cm( 2)y30 x3(x1) 27x3,当 x20 时, y543(cm). 16. 如:(1)小明从家骑车去离家800 米的学校, 用了 5 分钟,到校后, 发现课本落在家里了,又立即用了10 分钟步行回到家中. (2)此时 x 轴表示时间, y 轴表示离家的距离,A 点坐标为 (5,800) , B 点坐标为 (15,0). (3)设 AB 的解析式为ykxb,则5kb80015kb0,解得 k 80,b1200. y 80 x1200(5 x15). 名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 13 页,共 13 页 - - - - - - - - -

    注意事项

    本文(2022年一次函数教案+例题+习题+答案 .pdf)为本站会员(Che****ry)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开