2022年高三数学补习知识点总结.docx
2022年高三数学补习知识点总结 该为什么去奋斗呢?很简洁,每一个人都在奋斗,在竞争,奋斗是必定的,能让我们更好的生活着,奋斗是一个人生存的意义,一个人的人生假如不奋斗,那么人生就没有价值了。以下是我给大家整理的高三数学补习学问点总结,希望大家能够喜爱! 高三数学补习学问点总结1 1.等差数列的定义 假如一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示. 2.等差数列的通项公式 若等差数列an的首项是a1,公差是d,则其通项公式为an=a1+(n-1)d. 3.等差中项 假如A=(a+b)/2,那么A叫做a与b的等差中项. 4.等差数列的常用性质 (1)通项公式的推广:an=am+(n-m)d(n,mN_). (2)若an为等差数列,且m+n=p+q, 则am+an=ap+aq(m,n,p,qN_). (3)若an是等差数列,公差为d,则ak,ak+m,ak+2m,(k,mN_)是公差为md的等差数列. (4)数列Sm,S2m-Sm,S3m-S2m,也是等差数列. (5)S2n-1=(2n-1)an. (6)若n为偶数,则S偶-S奇=nd/2; 若n为奇数,则S奇-S偶=a中(中间项). 留意: 一个推导 利用倒序相加法推导等差数列的前n项和公式: Sn=a1+a2+a3+an, Sn=an+an-1+a1, +得:Sn=n(a1+an)/2 两个技巧 已知三个或四个数组成等差数列的一类问题,要擅长设元. (1)若奇数个数成等差数列且和为定值时,可设为,a-2d,a-d,a,a+d,a+2d,. (2)若偶数个数成等差数列且和为定值时,可设为,a-3d,a-d,a+d,a+3d,其余各项再依据等差数列的定义进行对称设元. 四种方法 等差数列的推断方法 (1)定义法:对于n2的随意自然数,验证an-an-1为同一常数; (2)等差中项法:验证2an-1=an+an-2(n3,nN_)都成立; (3)通项公式法:验证an=pn+q; (4)前n项和公式法:验证Sn=An2+Bn. 注:后两种方法只能用来推断是否为等差数列,而不能用来证明等差数列. 高三数学补习学问点总结2 1、集合的概念 集合是数学中最原始的不定义的概念,只能给出,描述性说明:某些制定的且不同的对象集合在一起就称为一个集合。组成集合的对象叫元素,集合通常用大写字母A、B、C、来表示。元素常用小写字母a、b、c、来表示。 集合是一个确定的整体,因此对集合也可以这样描述:具有某种属性的对象的全体组成的一个集合。 2、元素与集合的关系元素与集合的关系有属于和不属于两种:元素a属于集合A,记做aA;元素a不属于集合A,记做a?A。 3、集合中元素的特性 (1)确定性:设A是一个给定的集合,x是某一详细对象,则x或者是A的元素,或者不是A的元素,两种状况必有一种且只有一种成立。例如A=0,1,3,4,可知0A,6?A。 (2)互异性:“集合张的元素必需是互异的”,就是说“对于一个给定的集合,它的任何两个元素都是不同的”。 (3)无序性:集合与其中元素的排列次序无关,如集合a,b,c与集合c,b,a是同一个集合。 4、集合的分类 集合科依据他含有的元素个数的多少分为两类: 有限集:含有有限个元素的集合。如“方程3x+1=0”的解组成的集合”,由“2,4,6,8,组成的集合”,它们的元素个数是可数的,因此两个集合是有限集。 无限集:含有无限个元素的集合,如“到平面上两个定点的距离相等于全部点”“全部的三角形”,组成上述集合的元素不行数的,因此他们是无限集。 特殊的,我们把不含有任何元素的集合叫做空集,记错F,如x?R|+1=0。 5、特定的集合的表示 为了书写便利,我们规定常见的数集用特定的字母表示,下面是几种常见的数集表示方法,请牢记。 (1)全体非负整数的集合通常简称非负整数集(或自然数集),记做N。 (2)非负整数集内排出0的集合,也称正整数集,记做N_或N+。 (3)全体整数的集合通常简称为整数集Z。 (4)全体有理数的集合通常简称为有理数集,记做Q。 (5)全体实数的集合通常简称为实数集,记做R。 高三数学补习学问点总结3 复数的概念: 形如a+bi(a,bR)的数叫复数,其中i叫做虚数单位。全体复数所成的集合叫做复数集,用字母C表示。 复数的表示: 复数通常用字母z表示,即z=a+bi(a,bR),这一表示形式叫做复数的代数形式,其中a叫复数的实部,b叫复数的虚部。 复数的几何意义: (1)复平面、实轴、虚轴: 点Z的横坐标是a,纵坐标是b,复数z=a+bi(a、bR)可用点Z(a,b)表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴。明显,实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数 (2)复数的几何意义:复数集C和复平面内全部的点所成的集合是一一对应关系,即 这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应。 这就是复数的一种几何意义,也就是复数的另一种表示方法,即几何表示方法。 复数的模: 复数z=a+bi(a、bR)在复平面上对应的点Z(a,b)到原点的距离叫复数的模,记为|Z|,即|Z|= 虚数单位i: (1)它的平方等于-1,即i2=-1; (2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍旧成立 (3)i与-1的关系:i就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-i。 (4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。 复数模的性质: 复数与实数、虚数、纯虚数及0的关系: 对于复数a+bi(a、bR),当且仅当b=0时,复数a+bi(a、bR)是实数a;当b0时,复数z=a+bi叫做虚数;当a=0且b0时,z=bi叫做纯虚数;当且仅当a=b=0时,z就是实数0。 高三数学补习学问点总结第6页 共6页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页