2022年高一数学知识点总结_空间几何体的结构知识点.docx
-
资源ID:24699080
资源大小:20.57KB
全文页数:11页
- 资源格式: DOCX
下载积分:10金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年高一数学知识点总结_空间几何体的结构知识点.docx
2022年高一数学知识点总结_空间几何体的结构知识点 高一数学怎么学?学生学习期间,在课堂的时间占了一大部分。因此听课的效率如何,确定着学习的基本状况,今日我在这给大家整理了高一数学学问点总结,接下来随着我一起来看看吧! 高一数学学问点总结(一) 空间几何体的结构学问点 1、 静态的观点有两个平行的平面,其他的面是曲面;动态的观点:矩形绕其一边旋转形成的面围成的旋转体,象这样的旋转体称为圆柱。 2、 定义:以矩形的一边所在直线为旋转轴,其余各边旋转而形成的的曲面所围成的旋转体叫做圆柱,旋转轴叫圆柱的轴;垂直于旋转轴的边旋转而成的圆面叫做圆柱的底面;平行于圆柱轴的边旋转而成的面叫圆柱的侧面,圆柱的侧面又称圆柱的面。无论转到什么位置,不垂直于轴的边都叫圆柱侧面的母线。 表示:圆柱用表示轴的字母表示。 规定:圆柱和棱柱统称为柱体。 3、 静态观点:有一平面,其他的面是曲面;动态的观点:直角三角形绕其始终角旋转形成的面围成的旋转体,像这样的旋转体称为圆锥。 4、 定义:以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转而形成的面所围成的旋转体叫做圆锥。旋转轴叫圆锥的轴;垂直于旋转轴的边旋转而成的圆面成为圆锥的底面;不垂直于旋转轴的边旋转而成的曲面叫圆锥的侧面,圆锥的侧面又称圆锥的面,无论旋转到什么位置,这条边都叫做圆锥侧面的母线。 表示:圆锥用表示轴的字母表示。 规定:圆锥和棱锥统称为锥体。 5、 定义:以半直角梯形垂直于底边的腰所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆台。还可以看成用平行于圆锥底面的平面截这个圆锥,截面于底面之间的部分。旋转轴叫圆台的轴。垂直于旋转轴的边旋转而形成的圆面称为圆台的底面;不垂直于旋转轴的边旋转而成的曲面叫做圆台的侧面,无论转到什么位置,这条边都叫圆台侧面的母线。 表示:圆台用表示轴的字母表示。 规定:圆台和棱台统称为台体。 6、 定义:以半圆的直径所在的直线为旋转轴,将半圆旋转一周所形成的曲面称为球面,球面所围成的旋转体称为球体,简称为球。半圆的圆心称为球心,连接球面上随意一点与球心的线段称为球的半径,连接球面上两点并且过球心的线段称为球的直径。 表示:用表示球心的字母表示。 简洁组合体的结构: 1、由简洁几何体组合而成的几何体叫简洁组合体。现实世界中,我们看到的物体大多由具有柱、锥、台、球等几何结构特征的物体组合而成。如教材图1.1-11的前两个图形,他们是多面体与多面体的组合体;1.1-11的后两个图形,他们是由一个多面体从中截去一个或多个多面体得到的组合体。 2、常见的组合体有三种:多面体与多面体的组合;多面体与旋转体的组合;旋转体与旋转体的组合。其基本形式实质上有两种:一种是由简洁几何体拼接而成的简洁组合体;另一种是由简洁简洁几何体截去或挖去一部分而成的简洁组合体。 高一数学学问点总结(二) 高一数学学问点总结(三) 学问点一:棱柱的结构特征 1、定义:一般地,有两个面相互平行,其余各面都是四边形,并且每相邻两个四边形的公共边都相互平行,由这些面所围成的几何体叫做棱柱.在棱柱中,两个相互平行的面叫做棱柱的底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱.侧面与底的公共顶点叫做棱柱的顶点.棱柱中不在同一平面上的两个顶点的连线叫做棱柱的对角线.过不相邻的两条侧棱所形成的面叫做棱柱的对角面. 2、棱柱的分类:底面是三角形、四边形、五边形、的棱柱分别叫做三棱柱、四棱柱、五棱柱 3、棱柱的表示方法: 用表示底面的各顶点的字母表示棱柱,如下图,四棱柱、五棱柱、六棱柱可分别表示为、; 用棱柱的对角线表示棱柱,如上图,四棱柱可以表示为棱柱或棱柱等;五棱柱可表示为棱柱、棱柱等;六棱柱可表示为棱柱、棱柱、棱柱等. 4、棱柱的性质:棱柱的侧棱相互平行. 学问点二:棱锥的结构特征 1、定义:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥.这个多边形面叫做棱锥的底面.有公共顶点的各个三角形叫做棱锥的侧面.各侧面的公共顶点叫做棱锥的顶点.相邻侧面的公共边叫做棱锥的侧棱; 2、棱锥的分类:按底面多边形的边数,可以分为三棱锥、四棱锥、五棱锥 3、棱锥的表示方法:用表示顶点和底面的字母表示,如四棱锥; 学问点三:圆柱的结构特征 1、定义:以矩形的一边所在直线为旋转轴,其余三边旋转形成的曲面所围成的几何体叫做圆柱.旋转轴叫做圆柱的轴.垂直于轴的边旋转而成的曲面叫做圆柱的底面.平行于轴的边旋转而成的曲面叫做圆柱的侧面.无论旋转到什么位置不垂直于轴的边都叫做圆柱的母线. 2、圆柱的表示方法:用表示它的轴的字母表示,如圆柱 学问点四:圆锥的结构特征 1、定义:以直角三角形的直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体叫做圆锥.旋转轴叫做圆锥的轴. 垂直于轴的边旋转而成的曲面叫做圆锥的底面.不垂直于轴的边旋转而成的曲面叫做圆锥的侧面.无论旋转到什么位置不垂直于轴的边都叫做圆锥的母线. 2、圆锥的表示方法:用表示它的轴的字母表示,如圆锥. 学问点五:棱台和圆台的结构特征 1、定义:用一个平行于棱锥(圆锥)底面的平面去截棱锥(圆锥),底面和截面之间的部分叫做棱台(圆台);原棱锥(圆锥)的底面和截面分别叫做棱台(圆台)的下底面和上底面;原棱锥(圆锥)的侧面被截去后剩余的曲面叫做棱台(圆台)的侧面;原棱锥的侧棱被平面截去后剩余的部分叫做棱台的侧棱;原圆锥的母线被平面截去后剩余的部分叫做圆台的母线;棱台的侧面与底面的公共顶点叫做棱台的顶点;圆台可以看做由直角梯形绕直角边旋转而成,因此旋转的轴叫做圆台的轴. 2、棱台的表示方法:用各顶点表示,如四棱台; 3、圆台的表示方法:用表示轴的字母表示,如圆台; 注:圆台可以看做由圆锥截得,也可以看做是由直角梯形绕其直角边旋转而成. 学问点六:球的结构特征 1、定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体叫做球体,简称球.半圆的半径叫做球的半径.半圆的圆心叫做球心.半圆的直径叫做球的直径. 2、球的表示方法:用表示球心的字母表示,如球O. 学问点七:特别的棱柱、棱锥、棱台 特别的棱柱:侧棱不垂直于底面的棱柱称为斜棱柱;垂直于底面的棱柱称为直棱柱;底面是正多边形的直棱柱是正棱柱;底面是矩形的直棱柱叫做长方体;棱长都相等的长方体叫做正方体; 特别的棱锥:假如棱锥的底面是正多边形,且各侧面是全等的等腰三角形,那么这样的棱锥称为正棱锥;侧棱长等于底面边长的正三棱锥又称为正四面体; 特别的棱台:由正棱锥截得的棱台叫做正棱台; 注:简洁几何体的分类如下表: 学问点八:简洁组合体的结构特征 1、组合体的基本形式:由简洁几何体拼接而成的简洁组合体;由简洁几何体截去或挖去一部分而成的几何体; 2、常见的组合体有三种:多面体与多面体的组合;多面体与旋转体的组合;旋转体与旋转体的组合. 学问点九:中心投影与平行投影 1、投影、投影线和投影面:由于光的照耀,在不透亮物体后面的屏幕上会留下这个物体的影子,这种现象叫做投影,其中光线叫做投影线,屏幕叫做投影面. 2、中心投影:把光由一点向外散射形成的投影叫做中心投影. 3、中心投影的性质:中心投影的投影线交于一点;点光源距离物体越近,投影形成的影子越大. 4、平行投影:把一束平行光线照耀下形成的投影叫做平行投影,投影线正对着投影面时叫做正投影,否则叫做斜投影. 5、平行投影的性质:平行投影的投影线相互平行. 学问点十:常见几何体的三视图: 1、圆柱的正视图和侧视图是全等的矩形,俯视图为圆; 2、圆锥的正视图和侧视图是三角形,俯视图为圆和圆心; 3、圆台的正视图和侧视图都是等腰梯形,俯视图为两个同心圆; 4、球的三视图都是圆. 注: 1、三视图的排列方法是侧视图在正视图的右边;俯视图在正视图的下面; 2、一个几何体的侧视图和正视图高度一样,俯视图和正视图的长度一样,侧视图和俯 视图的宽度一样,即:长对正,高平齐,宽相等. 高一数学学问点总结(四) 空间几何体学问点 考点要求: 1.几何体的绽开图、几何体的三视图仍是高考的热点. 2.三视图和其他的学问点结合在一起命题是新教材中考查学生三视图及几何量计算的趋势. 3.重点驾驭以三视图为命题背景,探讨空间几何体的结构特征的题型. 4.要熟识一些典型的几何体模型,如三棱柱、长(正)方体、三棱锥等几何体的三视图. 学问结构: 1.多面体的结构特征 (1)棱柱有两个面相互平行,其余各面都是平行四边形,每相邻两个四边形的公共边平行。 正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形. (2)棱锥的底面是随意多边形,侧面是有一个公共顶点的三角形. 正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥.特殊地,各棱均相等的正三棱锥叫正四面体.反过来,正棱锥的底面是正多边形,且顶点在底面的射影是底面正多边形的中心. (3)棱台可由平行于底面的平面截棱锥得到,其上下底面是相像多边形. 2.旋转体的结构特征 (1)圆柱可以由矩形绕一边所在直线旋转一周得到. (2)圆锥可以由直角三角形绕一条直角边所在直线旋转一周得到. (3)圆台可以由直角梯形绕直角腰所在直线旋转一周或等腰梯形绕上下底面中心所在直线旋转半周得到,也可由平行于底面的平面截圆锥得到. (4)球可以由半圆面绕直径旋转一周或圆面绕直径旋转半周得到. 3.空间几何体的三视图 空间几何体的三视图是用平行投影得到,这种投影下,与投影面平行的平面图形留下的影子,与平面图形的形态和大小是全等和相等的,三视图包括正视图、侧视图、俯视图. 三视图的长度特征:“长对正,宽相等,高平齐”,即正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽.若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要留意实、虚线的画法. 4.空间几何体的直观图 空间几何体的直观图常用斜二测画法来画,基本步骤是: (1)画几何体的底面 在已知图形中取相互垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的x轴、y轴,两轴相交于点O,且使xOy=45°或135°,已知图形中平行于x轴、y轴的线段,在直观图中平行于x轴、y轴.已知图形中平行于x轴的线段,在直观图中长度不变,平行于y轴的线段,长度变为原来的一半. (2)画几何体的高 在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z轴,也垂直于xOy平面,已知图形中平行于z轴的线段,直观图中仍平行于z轴且长度不变. 高一数学学问点总结(五) 练习 1. 下列几种关于投影的说法不正确的是( ) A.平行投影的投影线是相互平行的 B.中心投影的投影线是相互垂直的 C.线段上的点在中心投影下仍旧在线段上 D.平行的直线在中心投影中不平行 2. 依据下列对于几何结构特征的描述,说出几何体的名称: (1)由7个面围成,其中两个面是相互平行且全等的五边形,其他面都是全等的矩形; (2)一个等腰三角形围着底边上的高所在的直线旋转180度形成的封闭曲面所围成的图形; (3)一个等腰直角三角形围着底边上所在的直线旋转360度形成的封闭曲面所围成的图形. 高一数学学问点总结_空间几何体的结构学问点第11页 共11页第 11 页 共 11 页第 11 页 共 11 页第 11 页 共 11 页第 11 页 共 11 页第 11 页 共 11 页第 11 页 共 11 页第 11 页 共 11 页第 11 页 共 11 页第 11 页 共 11 页第 11 页 共 11 页