2022年初二数学知识点苏教版.docx
2022年初二数学知识点苏教版 宏大的成果和辛勤劳动是成正比例的,有一分劳动就有一分收获,积累,从少到多,奇迹就可以创建出来。学习也是一样的,须要积累,从少变多。下面是我给大家整理的一些初二数学的学问点,希望对大家有所帮助。 初二上学期数学学问点归纳 分式方程 一、理解定义 1、分式方程:含分式,并且分母中含未知数的方程分式方程。 2、解分式方程的思路是: (1)在方程的两边都乘以最简公分母,约去分母,化成整式方程。 (2)解这个整式方程。 (3)把整式方程的根带入最简公分母,看结果是不是为零,使最简公分母为零的根是原方程的增根,必需舍去。 (4)写出原方程的根。 “一化二解三检验四总结” 3、增根:分式方程的增根必需满意两个条件: (1)增根是最简公分母为0;(2)增根是分式方程化成的整式方程的.根。 4、分式方程的解法: (1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程; (3)解整式方程;(4)验根; 注:解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程肯定要验根。 分式方程检验方法:将整式方程的解带入最简公分母,假如最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。 5、分式方程解实际问题 步骤:审题设未知数列方程解方程检验写出答案,检验时要留意从方程本身和实际问题两个方面进行检验。 二、轴对称图形: 一个图形沿一条直线对折,直线两旁的部分能够完全重合。这条直线叫做对称轴。相互重合的点叫做对应点。 1、轴对称: 两个图形沿一条直线对折,其中一个图形能够与另一个图形完全重合。这条直线叫做对称轴。相互重合的点叫做对应点。 2、轴对称图形与轴对称的区分与联系: (1)区分。轴对称图形探讨的是“一个图形与一条直线的对称关系”;轴对称探讨的是“两个图形与一条直线的对称关系”。 (2)联系。把轴对称图形中“对称轴两旁的部分看作两个图形”便是轴对称;把轴对称的“两个图形看作一个整体”便是轴对称图形。 3、轴对称的性质: (1)成轴对称的两个图形全等。 (2)对称轴与连结“对应点的线段”垂直。 (3)对应点到对称轴的距离相等。 (4)对应点的连线相互平行。 三、用坐标表示轴对称 1、点(x,y)关于x轴对称的点的坐标为(x,-y); 2、点(x,y)关于y轴对称的点的坐标为(-x,y); 3、点(x,y)关于原点对称的点的坐标为(-x,-y)。 四、关于坐标轴夹角平分线对称 点P(x,y)关于第一、三象限坐标轴夹角平分线y=x对称的点的坐标是(y,x) 点P(x,y)关于其次、四象限坐标轴夹角平分线y=-x对称的点的坐标是(-y,-x) 初二数学三角形学问点归纳 直角三角形 备考兵法 1.正确区分勾股定理与其逆定理,驾驭常用的勾股数. 2.在解决直角三角形的有关问题时,应留意以勾股定理为桥梁建立方程(组)来解决问题,实现几何问题代数化. 3.在解决直角三角形的相关问题时,要留意题中是否含有特别角(30°,45°,60°).若有,则应运用一些相关的特别性质解题. 4.在解决很多非直角三角形的计算与证明问题时,经常通过作高转化为直角三角形来解决. 5.折叠问题是新中考热点之一,在处理折叠问题时,动手操作,仔细视察,充分发挥空间想象力,留意折叠过程中,线段,角发生的改变,找寻破题思路. 三角形的重心 已知:ABC中,D为BC中点,E为AC中点,AD与BE交于O,CO延长线交AB于F。求证:F为AB中点。 证明:依据燕尾定理,S(AOB)=S(AOC),又S(AOB)=S(BOC),S(AOC)=S(BOC),再应用燕尾定理即得AF=BF,命题得证。 重心的几条性质: 1.重心和三角形3个顶点组成的3个三角形面积相等。 2.重心到三角形3个顶点距离的平方和最小。 3.在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为(X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系横坐标:(X1+X2+X3)/3纵坐标:(Y1+Y2+Y3)/3竖坐标:(Z1+Z2+Z3)/3 4重心到顶点的距离与重心到对边中点的距离之比为2:1。 5.重心是三角形内到三边距离之积的点。 假如用塞瓦定理证,则极易证三条中线交于一点。 八年级上册数学学问点 一次函数 20.1一次函数的概念 1.一般地,解析式形如ykxb(kb是常数,k0)的函数叫做一次函数;一次函数的定义域是一切实数 2.一般地,我们把函数yc(c为常数)叫做常值函数 20.2一次函数的图像 1.列表、描点、连线 2.一条直线与y轴的交点的纵坐标叫做这条直线在y轴上的截距,简称直线的截距 3.一般地,直线ykxb(kb是常数,k0)与y轴的交点坐标是(0,b),直线的截距是b 4.一次函数ykxb(b0)的图像可以由正比例函数ykx的图像平移得到当b0时,向上平移b个单位,当b0时,向下平移b的肯定值个单位 5.一元一次不等式与一次函数之间的关系(看图) 20.3一次函数的性质 1.一次函数ykxb(kb是常数,k?0)具有以下性质: 当k0时,函数值y随自变量x的值增大而增大 当k0时,函数值y随自变量x的值增大而减小 如图所示,当k0,b0时,直线经过第一、二、三象限(直线不经过第四象限);如图所示,当k0,bO时,直线经过第一、三、四象限(直线不经过其次象限);如图所示,当kO,b0时,直线经过第一、二、四象限(直线不经过第三象限); 如图所示,当kO,bO时,直线经过其次、三、四象限(直线不经过第一象限) 初二数学学问点苏教版第6页 共6页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页