2022年高二年级数学的大小知识点归纳.docx
2022年高二年级数学的大小知识点归纳 高二阶段是打基础的关键一年,除了要把高一所学的学问和技能刚好应用到高二的学习之上,还得把高二的学问和技能逐步汲取和驾驭,为高三复习打好基础。下面是我给大家带来的高二年级数学的大小学问点归纳,希望能助你一臂之力! 高二年级数学的大小学问点归纳1 (1)依次结构:依次结构是最简洁的算法结构,语句与语句之间,框与框之间是按从上到下的依次进行的,它是由若干个依次执行的处理步骤组成的,它是任何一个算法都离不开的一种基本算法结构。 依次结构在程序框图中的体现就是用流程线将程序框自上而下地连接起来,按依次执行算法步骤。如在示意图中,A框和B框是依次执行的,只有在执行完A框指定的操作后,才能接着执行B框所 指定的操作。 (2)条件结构:条件结构是指在算法中通过对条件的推断依据条件是否成立而选择不同流向的 算法结构。 条件P是否成立而选择执行A框或B框。无论P条件是否成立,只能执行A框或B框之一,不行能同时执行 A框和B框,也不行能A框、B框都不执行。一个推断结构可以有多个推断框。 (3)循环结构:在一些算法中,常常会出现从某处起先,根据肯定条件,反复执行某一处理步骤的状况,这就是循环结构,反复执行的处理步骤为循环体,明显,循环结构中肯定包含条件结构。循环结构又称重复结构,循环结构可细分为两类: 一类是当型循环结构,如下左图所示,它的功能是当给定的条件P成立时,执行A框,A框执行完毕后,再推断条件P是否成立,假如仍旧成立,再执行A框,如此反复执行A框,直到某一次条件P不成立为止,此时不再执行A框,离开循环结构。 另一类是直到型循环结构,如下右图所示,它的功能是先执行,然后推断给定的条件P是否成立,假如P仍旧不成立,则接着执行A框,直到某一次给定的条件P成立为止,此时不再执行A框,离开循环结构。 留意: 1循环结构要在某个条件下终止循环,这就须要条件结构来推断。因此,循环结构中肯定包含条件结构,但不允许“死循环”。 2在循环结构中都有一个计数变量和累 加变量。计数变量用于记录循环次数,累加变量用于输出结果。计数变量和累加变量一般是同步执行的,累加一次,计数一次。 高二年级数学的大小学问点归纳2 (1)必定事务:在条件S下,肯定会发生的事务,叫相对于条件S的必定事务; (2)不行能事务:在条件S下,肯定不会发生的事务,叫相对于条件S的不行能事务; (3)确定事务:必定事务和不行能事务统称为相对于条件S的确定事务; (4)随机事务:在条件S下可能发生也可能不发生的事务,叫相对于条件S的随机事务; (5)频数与频率:在相同的条件S下重复n次试验,视察某一事务A是否出现,称n次试验中事务A出现的次数nA为事务A出现的频数;称事务A出现的比例fn(A)=nnA为事务A出现的概率:对于给定的随机事务A,假如随着试验次数的增加,事务A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事务A的概率。 (6)频率与概率的区分与联系:随机事务的频率,指此事务发生的次数nA与试验总次数n的比值nnA,它具有肯定的稳定性,总在某个常数旁边摇摆,且随着试验次数的不断增多,这种摇摆幅度越来越小。我们把这个常数叫做随机事务的概率,概率从数量上反映了随机事务发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事务的概率。 高二年级数学的大小学问点归纳3 异面直线定义:不同在任何一个平面内的两条直线 异面直线性质:既不平行,又不相交. 异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线 异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角.两条异面直线所成角的范围是(0°,90°,若两条异面直线所成的角是直角,我们就说这两条异面直线相互垂直. 求异面直线所成角步骤: A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特别的位置,顶点选在特别的位置上.B、证明作出的角即为所求角C、利用三角形来求角 (7)等角定理:假如一个角的两边和另一个角的两边分别平行,那么这两角相等或互补. (8)空间直线与平面之间的位置关系 直线在平面内有多数个公共点. 三种位置关系的符号表示:aa=Aa (9)平面与平面之间的位置关系:平行没有公共点; 相交有一条公共直线.=b 2、空间中的平行问题 (1)直线与平面平行的判定及其性质 线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行. 线线平行线面平行 线面平行的性质定理:假如一条直线和一个平面平行,经过这条直线的平面和这个平面相交, 那么这条直线和交线平行.线面平行线线平行 (2)平面与平面平行的判定及其性质 两个平面平行的判定定理 (1)假如一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行 (线面平行面面平行), (2)假如在两个平面内,各有两组相交直线对应平行,那么这两个平面平行. (线线平行面面平行), (3)垂直于同一条直线的两个平面平行, 两个平面平行的性质定理 (1)假如两个平面平行,那么某一个平面内的直线与另一个平面平行.(面面平行线面平行) (2)假如两个平行平面都和第三个平面相交,那么它们的交线平行.(面面平行线线平行) 3、空间中的垂直问题 (1)线线、面面、线面垂直的定义 两条异面直线的垂直:假如两条异面直线所成的角是直角,就说这两条异面直线相互垂直. 线面垂直:假如一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直. 平面和平面垂直:假如两个平面相交,所成的二面角(从一条直线动身的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直. (2)垂直关系的判定和性质定理 线面垂直判定定理和性质定理 判定定理:假如一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面. 性质定理:假如两条直线同垂直于一个平面,那么这两条直线平行. 面面垂直的判定定理和性质定理 判定定理:假如一个平面经过另一个平面的一条垂线,那么这两个平面相互垂直. 性质定理:假如两个平面相互垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面. 4、空间角问题 (1)直线与直线所成的角 两平行直线所成的角:规定为. 两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角. 两条异面直线所成的角:过空间随意一点O,分别作与两条异面直线a,b平行的直线,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角. (2)直线和平面所成的角 平面的平行线与平面所成的角:规定为.平面的垂线与平面所成的角:规定为. 平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角. 求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”. 在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线, 在解题时,留意挖掘题设中主要信息: (1)斜线上一点到面的垂线; (2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线. (3)二面角和二面角的平面角 二面角的定义:从一条直线动身的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面. 二面角的平面角:以二面角的棱上随意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角. 直二面角:平面角是直角的二面角叫直二面角. 两相交平面假如所组成的二面角是直二面角,那么这两个平面垂直;反过来,假如两个平面垂直,那么所成的二面角为直二面角 求二面角的方法 定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角 垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角 高二年级数学的大小学问点归纳第8页 共8页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页