2013年高考山东数学(文)试题精解精析(解析版).doc
-
资源ID:2502518
资源大小:2MB
全文页数:21页
- 资源格式: DOC
下载积分:1金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2013年高考山东数学(文)试题精解精析(解析版).doc
中小学教育(jiaoyu123.taobao.com) 教案学案课件试题全册打包的起点,又是思维的落脚点,较好地考查了考生潜在的数学素养和创新意识,充分调动考生的能动性,引导考生从不同的角度思考问题,用灵活的方法解决问题.试卷中出现了一些“生活元素”,如本试卷分第I卷和第II卷两部分,共4页.满分150分.考试用时120分钟,考试结束,务必将试卷和答题卡一并上交.注意事项:1.答题前,考生务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、县区和科类填写在答题卡上和试卷规定的位置上.2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.3.第II卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件互斥,那么第I卷(共60分)本解析为名师解析团队原创,授权独家使用,如有盗用,依法追责!一、 选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数为虚数单位,则( )A.25 B. C.6 D.2. 已知集合均为全集的子集,且,则( )A. B. C. D.3. 已知函数为奇函数,且当时, ,则 ( )A. B. C. D. 【答案】D【解析】【考点定位】本题考查函数的奇偶性的应用,考查运算求解能力和转化思想. 根据直接运算而若求在上的解析式再求便“多余”了.4. 一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如右图所示该四棱锥侧面积和体积分别是A. B. C. D. 5. 函数的定义域为( )A. B. C. D. 通过交集运算确定.6. 执行右边的程序框图,若第一次输入的的值为,第二次输入的的值为,则第一次、第二次输出的的值分别为( )A. B. C. D. 7. 的内角的对边分别是,若,则( )A. B. C. D. 【答案】B【解析】,所以,整理得求得或8. 给定两个命题,的必要而不充分条件,则的( )A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件9. 函数的图象大致为( )10. 将某选手的个得分去掉个最高分,去掉个最低分,个剩余分数的平均分为,现场做的个分数的茎叶图后来有一个数据模糊,无法辨认,在图中以表示: 则个剩余分数的方差为( )A. B. C. D. 11. 抛物线的焦点与双曲线的右焦点的连线交于第一象限的点,若在点处的切线平行于的一条渐近线,则( )A. B. C. D. 解能力.这一方程形式为导数法研究提供了方便,本题“切线”这一信号更加决定了“求导”是“必经之路”.根据三点共线的斜率性质构造方程,从而确定抛物线方程形式,此外还要体会这种设点的意义所在.12. 设正实数满足,则当取得最大值时,的最大值为( )A. B. C. D.二填空题:本大题共4小题,每小题4分,共16分.13.过点(3,1)作圆的弦,其中最短的弦长为_.能轻松解答,有时候可能会出现点到直线的距离公式来求弦心距的长度.14. 在平面直角坐标系中,为不等式组所表示的区域上一动点,则直线的最小值为_.15. 在平面直角坐标系中,已知,若,则实数的值为_.16.定义“正对数”:,现有四个命题:若,则;若,则若,则若,则其中的真命题有_(写出所有真命题的序号)三解答题:本大题共6小题,共74分.17.某小组共有五位同学,他们的身高(单位:米)以及体重指标(单位:千克/米2)如下表所示:ABCDE身高1.691.731.751.791.82体重指标19.225.118.523.320.9()从该小组身高低于的同学中任选人,求选到的人身高都在以下的概率()从该小组同学中任选人,求选到的人的身高都在以上且体重指标都在中的概率.【答案】() () 【解析】(I)可得到满足条件的基本事件有种情形,18. 设函数,且的图象的一个对称中心到最近的对称轴的距离为,()求的值;()求在区间上的最大值和最小值.所以因此19. 如图,四棱锥中,,分别为的中点.()求证:;()求证:.【答案】略【解析】(I)取的中点,连接因为为的中点,所以,又,所以因此四边形是平行四边形.又,所以20.设等差数列的前项和为,且,.()求数列的通项公式;()设数列满足 ,求的前项和. 【考点定位】本题考查等差数列的通项公式、错位相减求和方法,考查方程思想、转化思想和运算能力、推理论证能力.根据已知条件列出关于首项和公差的方程组,从而确该数列的通项公式,这一问相对简单,第二问通过递推关系得到数列的通项公式后再按照错位相减方法转化为等比数列的求和运算进行解决.本题第二问的条件因其结构复杂在使用上形成障碍,如果表示为数列的前项和的形式,则不难想到利用这一熟悉结构来处理.21.已知函数()设,求的单调区间;() 设,且对于任意,.试比较与的大小.由(I)知是的唯一极小值点,然按照程序化运行,即求导、关于参数分类讨论、确定单调区间等步骤进行.而第二问则是在第一问的基础上进一步挖掘解题素材,如隐含条件的发现、新函数的构造等,都为解决问题提供了有力支持.22.在平面直角坐标系中,已知椭圆的中心在原点,焦点在轴上,短轴长为,离心率为.(I)求椭圆的方程;(II) 为椭圆上满足的面积为的任意两点,为线段的中点,射线交椭圆与点,设,求实数的值.【考点定位】本题基于椭圆问题综合考查椭圆的方程、直线和椭圆的位置关系、平面向量的坐标运算等知识,考查方程思想、分类讨论思想、推理论证能力和运算求解能力.第一问通过椭圆的