2021届课标版高考文科数学大一轮复习精练:§9.3 椭圆及其性质(试题部分) .docx
9.3椭圆及其性质探考情 悟真题【考情探究】考点内容解读5年考情预测热度考题示例考向关联考点椭圆的定义及标准方程掌握椭圆的定义,并会用椭圆的定义解题;掌握椭圆的几何图形和标准方程,并会用待定系数法求椭圆的方程2019课标全国,12,5分椭圆的方程余弦定理椭圆的几何性质掌握椭圆的几何性质,并会熟练运用;理解椭圆离心率的定义,并会求椭圆的离心率2019课标全国,20,12分椭圆的离心率椭圆的定义2018课标全国,11,5分椭圆的离心率椭圆的定义,焦点三角形2018课标全国,4,5分椭圆的离心率椭圆的标准方程2019课标全国,15,5分椭圆的几何性质直线与椭圆的位置关系掌握直线与椭圆位置关系的判断方法;理解“整体代换”思想的含义,并能通过直线与椭圆位置关系解答相应问题2018课标全国,20,12分直线与椭圆的位置关系弦中点,向量的运算,弦长问题分析解读从近几年的高考试题来看,椭圆的定义、标准方程、几何性质以及直线与椭圆的位置关系一直是高考命题的重点和热点,因此要求学生在备考时注重以下内容:能够熟练使用直接法、待定系数法、定义法求椭圆的方程;能熟练运用椭圆的几何性质(如范围、对称性、顶点、离心率等)解决相关问题;能够把直线与椭圆的位置关系问题转化为方程组解的问题,从而判断其位置关系,解决相关问题.在解答题中常以椭圆的方程、几何性质以及直线与椭圆的位置关系为主,同时与向量、函数、不等式等知识综合起来进行考查趋势逐渐加强,备考时应加以重视.破考点 练考向【考点集训】考点一椭圆的定义及标准方程1.(2019湖北重点中学第一次调研,11)点P是椭圆x29+y25=1上的点,F1、F2是椭圆的左、右焦点,则PF1F2的周长是()A.12 B.10 C.8 D.6答案B2.(2018湖北十堰十三中质检,6)一个椭圆的中心在原点,焦点F1,F2在x轴上,P(2,3)是椭圆上一点,且|PF1|,|F1F2|,|PF2|成等差数列,则椭圆的标准方程为()A.x28+y26=1 B.x216+y26=1C.x24+y22=1D.x28+y24=1答案A考点二椭圆的几何性质1.(2020届河南新乡、许昌两市第二次联考,4)焦点在x轴上的椭圆x2a2+y23=1(a>0)的离心率为22,则a=()A.6 B.6+32C.6 D.32答案C2.(2020届辽宁抚顺部分重点中学第二次联考,6)已知椭圆x2a2+y24=1的一个焦点坐标为(4,0),则a=()A.25 B.23 C.23 D.25答案A3.(2020届百师联盟第一次联考,5)已知椭圆C:x2a2+y2b2=1(a>b>0),F1、F2为其左、右焦点,|F1F2|=22,B为短轴的一个端点,三角形BF1O(O为坐标原点)的面积为7,则椭圆的长轴长为()A.4 B.8 C.1+332 D.1+33答案B4.(2018湖北武汉模拟,4)曲线x225+y29=1与曲线x225-k+y29-k=1(k<9)的()A.长轴长相等B.短轴长相等C.离心率相等D.焦距相等答案D5.(2015课标,5,5分)已知椭圆E的中心在坐标原点,离心率为12,E的右焦点与抛物线C:y2=8x的焦点重合,A,B是C的准线与E的两个交点,则|AB|=()A.3 B.6 C.9 D.12答案B考点三直线与椭圆的位置关系答案A2.过椭圆x25+y24=1的右焦点作一条斜率为2的直线与椭圆交于A,B两点,O为坐标原点,则OAB的面积为.答案53炼技法 提能力【方法集训】方法1求椭圆的标准方程的方法1.(2020届江西南昌重点中学9月联考,8)椭圆C1:x2a2+y2b2=1(a>b>0)与双曲线C2:x2a2-y2b2=1的离心率之积为32,直线l:x-y+3=0与椭圆C1相切,则椭圆C1的方程为()A.x22+y2=1B.x24+y22=1C.x26+y23=1D.x216+y28=1答案C2.已知椭圆C的中心在原点,焦点在坐标轴上,且经过两点(2,-2),-1,142,则椭圆C的方程为.答案x28+y24=1方法2求椭圆的离心率(或其取值范围)的方法1.(2017课标全国,11,5分)已知椭圆C:x2a2+y2b2=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx-ay+2ab=0相切,则C的离心率为()A.63 B.33C.23 D.13答案A2.(2018课标全国,11,5分)已知F1,F2是椭圆C的两个焦点,P是C上的一点.若PF1PF2,且PF2F1=60,则C的离心率为()A.1-32 B.2-3C.3-12 D.3-1答案D3.(2020届河南十所名校尖子生第二次联考,12)已知椭圆C:x2a2+y2b2=1(a>b>0)的左、右顶点分别为A,B,点M为椭圆C上异于A,B的一点.直线AM和直线BM的斜率之积为-14,则椭圆C的离心率为()A.14 B.12 C.32 D.154答案C4.设F1(-c,0)、F2(c,0)分别是椭圆x2a2+y2b2=1(a>b>0)的左、右焦点,若在直线x=a2c上存在点P,使线段PF1的中垂线过点F2,则椭圆离心率的取值范围是()A.0,22 B.0,33C.22,1 D.33,1答案D方法3解决弦中点问题的方法1.(2019湖南郴州一模,11)已知椭圆x24+y2b2=1(0<b<2)的左,右焦点分别为F1,F2,过左焦点F1作斜率为2的直线与椭圆交于A,B两点,AB的中点是P,O为坐标原点,若直线OP的斜率为-14,则b的值是()A.2 B.3 C.32 D.2答案D2.已知中心在原点,一焦点为F(0,4)的椭圆被直线l:y=3x-2截得的弦的中点横坐标为12,则此椭圆的方程为.答案y224+x28=1【五年高考】A组统一命题课标卷题组1.(2018课标全国,4,5分)已知椭圆C:x2a2+y24=1的一个焦点为(2,0),则C的离心率为()A.13B.12C.22D.223答案C2.(2017课标全国,12,5分)设A,B是椭圆C:x23+y2m=1长轴的两个端点.若C上存在点M满足AMB=120,则m的取值范围是()A.(0,19,+)B.(0,39,+)C.(0,14,+)D.(0,34,+)答案A3.(2016课标全国,5,5分)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的14,则该椭圆的离心率为()A.13B.12C.23D.34答案B4.(2016课标全国,12,5分)已知O为坐标原点,F是椭圆C:x2a2+y2b2=1(a>b>0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PFx轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为()A.13B.12C.23D.34答案A5.(2019课标全国,15,5分)设F1,F2为椭圆C:x236+y220=1的两个焦点,M为C上一点且在第一象限.若MF1F2为等腰三角形,则M的坐标为.答案(3,15)6.(2019课标全国,20,12分)已知F1,F2是椭圆C:x2a2+y2b2=1(a>b>0)的两个焦点,P为C上的点,O为坐标原点.(1)若POF2为等边三角形,求C的离心率;(2)如果存在点P,使得PF1PF2,且F1PF2的面积等于16,求b的值和a的取值范围.答案本题主要考查椭圆的定义、简单的几何性质;考查数形结合的数学思想和逻辑思维能力与运算求解能力;体现了逻辑推理与数学运算的核心素养.(1)连接PF1.由POF2为等边三角形可知在F1PF2中,F1PF2=90,|PF2|=c,|PF1|=3c,于是2a=|PF1|+|PF2|=(3+1)c,故C的离心率e=ca=3-1.(2)由题意可知,满足条件的点P(x,y)存在,当且仅当12|y|2c=16,yx+cyx-c=-1,x2a2+y2b2=1,即c|y|=16,x2+y2=c2,x2a2+y2b2=1.由及a2=b2+c2得y2=b4c2,又由知y2=162c2,故b=4.由得x2=a2c2(c2-b2),所以c2b2,从而a2=b2+c22b2=32,故a42.当b=4,a42时,存在满足条件的点P.所以b=4,a的取值范围为42,+).7.(2018课标全国,20,12分)已知斜率为k的直线l与椭圆C:x24+y23=1交于A,B两点,线段AB的中点为M(1,m)(m>0).(1)证明:k<-12;(2)设F为C的右焦点,P为C上一点,且FP+FA+FB=0.证明:2|FP|=|FA|+|FB|.答案本题考查椭圆的几何性质、直线与椭圆的位置关系.(1)设A(x1,y1),B(x2,y2),则x124+y123=1,x224+y223=1.两式相减,并由y1-y2x1-x2=k得x1+x24+y1+y23k=0.由题设知x1+x22=1,y1+y22=m,于是k=-34m.由题设得0<m<32,故k<-12.(2)证明:由题意得F(1,0).设P(x3,y3),则(x3-1,y3)+(x1-1,y1)+(x2-1,y2)=(0,0).由(1)及题设得x3=3-(x1+x2)=1,y3=-(y1+y2)=-2m<0.又点P在C上,所以m=34,从而P1,-32,|FP|=32.于是|FA|=(x1-1)2+y12=(x1-1)2+31-x124=2-x12.同理|FB|=2-x22.所以|FA|+|FB|=4-12(x1+x2)=3.故2|FP|=|FA|+|FB|.8.(2016课标全国,21,12分)已知A是椭圆E:x24+y23=1的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MANA.(1)当|AM|=|AN|时,求AMN的面积;(2)当2|AM|=|AN|时,证明:3<k<2.答案(1)设M(x1,y1),则由题意知y1>0.由已知及椭圆的对称性知,直线AM的倾斜角为4.又A(-2,0),因此直线AM的方程为y=x+2.(2分)将x=y-2代入x24+y23=1得7y2-12y=0.解得y=0或y=127,所以y1=127.因此AMN的面积SAMN=212127127=14449.(4分)(2)证明:将直线AM的方程y=k(x+2)(k>0)代入x24+y23=1得(3+4k2)x2+16k2x+16k2-12=0.由x1(-2)=16k2-123+4k2得x1=2(3-4k2)3+4k2,故|AM|=|x1+2|1+k2=121+k23+4k2.由题设,直线AN的方程为y=-1k(x+2),故同理可得|AN|=12k1+k23k2+4.(7分)由2|AM|=|AN|得23+4k2=k3k2+4,即4k3-6k2+3k-8=0.(9分)设f(t)=4t3-6t2+3t-8,则k是f(t)的零点, f (t)=12t2-12t+3=3(2t-1)20,所以f(t)在(0,+)内单调递增.又f(3)=153-26<0, f(2)=6>0,因此f(t)在(0,+)内有唯一的零点,且零点k在(3,2)内,所以3<k<2.(12分)B组自主命题省(区、市)卷题组考点一椭圆的定义及标准方程1.(2019浙江,15,4分)已知椭圆x29+y25=1的左焦点为F,点P在椭圆上且在x轴的上方.若线段PF的中点在以原点O为圆心,|OF|为半径的圆上,则直线PF的斜率是.答案152.(2019江苏,17,14分)如图,在平面直角坐标系xOy中,椭圆C:x2a2+y2b2=1(a>b>0)的焦点为F1(-1,0),F2(1,0).过F2作x轴的垂线l,在x轴的上方,l与圆F2:(x-1)2+y2=4a2交于点A,与椭圆C交于点D.连接AF1并延长交圆F2于点B,连接BF2交椭圆C于点E,连接DF1.已知DF1=52.(1)求椭圆C的标准方程;(2)求点E的坐标.答案本题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力.(1)设椭圆C的焦距为2c.因为F1(-1,0),F2(1,0),所以F1F2=2,c=1.又因为DF1=52,AF2x轴,所以DF2=DF12-F1F22=522-22=32.因此2a=DF1+DF2=4,从而a=2.由b2=a2-c2,得b2=3.因此,椭圆C的标准方程为x24+y23=1.(2)解法一:由(1)知,椭圆C:x24+y23=1,a=2.因为AF2x轴,所以点A的横坐标为1.将x=1代入圆F2的方程(x-1)2+y2=16,解得y=4.因为点A在x轴上方,所以A(1,4).又F1(-1,0),所以直线AF1:y=2x+2.由y=2x+2,(x-1)2+y2=16,得5x2+6x-11=0,解得x=1或x=-115.将x=-115代入y=2x+2,得y=-125.因此B-115,-125.又F2(1,0),所以直线BF2:y=34(x-1).由y=34(x-1),x24+y23=1,得7x2-6x-13=0,解得x=-1或x=137.又因为E是线段BF2与椭圆的交点,所以x=-1.将x=-1代入y=34(x-1),得y=-32.因此E-1,-32.解法二:由(1)知,椭圆C:x24+y23=1.如图,连接EF1.因为BF2=2a,EF1+EF2=2a,所以EF1=EB,从而BF1E=B.因为F2A=F2B,所以A=B.所以A=BF1E,从而EF1F2A.因为AF2x轴,所以EF1x轴.因为F1(-1,0),由x=-1,x24+y23=1,解得y=32.又因为E是线段BF2与椭圆的交点,所以y=-32.因此E-1,-32.3.(2018天津,19,14分)设椭圆x2a2+y2b2=1(a>b>0)的右顶点为A,上顶点为B.已知椭圆的离心率为53,|AB|=13.(1)求椭圆的方程;(2)设直线l:y=kx(k<0)与椭圆交于P,Q两点,l与直线AB交于点M,且点P,M均在第四象限.若BPM的面积是BPQ面积的2倍,求k的值.答案(1)设椭圆的焦距为2c,由已知有c2a2=59,又由a2=b2+c2,可得2a=3b.由|AB|=a2+b2=13,从而a=3,b=2.所以,椭圆的方程为x29+y24=1.(2)设点P的坐标为(x1,y1),点M的坐标为(x2,y2),由题意,x2>x1>0,点Q的坐标为(-x1,-y1).由BPM的面积是BPQ面积的2倍,可得|PM|=2|PQ|,从而x2-x1=2x1-(-x1),即x2=5x1.易知直线AB的方程为2x+3y=6,由方程组2x+3y=6,y=kx,消去y,可得x2=63k+2.由方程组x29+y24=1,y=kx,消去y,可得x1=69k2+4.由x2=5x1,可得9k2+4=5(3k+2),两边平方,整理得18k2+25k+8=0,解得k=-89或k=-12.当k=-89时,x2=-9<0,不合题意,舍去;当k=-12时,x2=12,x1=125,符合题意.所以,k的值为-12.考点二椭圆的几何性质1.(2016江苏,10,5分)如图,在平面直角坐标系xOy中,F是椭圆x2a2+y2b2=1(a>b>0)的右焦点,直线y=b2与椭圆交于B,C两点,且BFC=90,则该椭圆的离心率是.答案632.(2019天津,19,14分)设椭圆x2a2+y2b2=1(a>b>0)的左焦点为F,左顶点为A,上顶点为B.已知3|OA|=2|OB|(O为原点).(1)求椭圆的离心率;(2)设经过点F且斜率为34的直线l与椭圆在x轴上方的交点为P,圆C同时与x轴和直线l相切,圆心C在直线x=4上,且OCAP.求椭圆的方程.答案本题主要考查椭圆的标准方程和几何性质、直线方程、圆等基础知识.考查用代数方法研究圆锥曲线的性质.考查运算求解能力,以及用方程思想、数形结合思想解决问题的能力.(1)设椭圆的半焦距为c,由已知有3a=2b.又由a2=b2+c2,消去b得a2=32a2+c2,解得ca=12.所以,椭圆的离心率为12.(2)由(1)知,a=2c,b=3c,故椭圆方程为x24c2+y23c2=1.由题意,F(-c,0),则直线l的方程为y=34(x+c).点P的坐标满足x24c2+y23c2=1,y=34(x+c),消去y并化简,得到7x2+6cx-13c2=0,解得x1=c,x2=-13c7.代入到l的方程,解得y1=32c,y2=-914c.因为点P在x轴上方,所以Pc,32c.由圆心C在直线x=4上,可设C(4,t).因为OCAP,且由(1)知A(-2c,0),故t4=32cc+2c,解得t=2.则C(4,2).因为圆C与x轴相切,所以圆的半径长为2,又由圆C与l相切,得34(4+c)-21+342=2,可得c=2.所以,椭圆的方程为x216+y212=1.考点三直线与椭圆的位置关系1.(2018江苏,18,14分)如图,在平面直角坐标系xOy中,椭圆C过点3,12,焦点F1(-3,0),F2(3,0),圆O的直径为F1F2.(1)求椭圆C及圆O的方程;(2)设直线l与圆O相切于第一象限内的点P.若直线l与椭圆C有且只有一个公共点,求点P的坐标;直线l与椭圆C交于A,B两点.若OAB的面积为267,求直线l的方程.答案解法一:(1)因为椭圆C的焦点为F1(-3,0),F2(3,0),所以可设椭圆C的方程为x2a2+y2b2=1(a>b>0).又点3,12在椭圆C上,所以3a2+14b2=1,a2-b2=3,解得a2=4,b2=1.因此,椭圆C的方程为x24+y2=1.因为圆O的直径为F1F2,所以其方程为x2+y2=3.(2)设直线l与圆O相切于P(x0,y0)(x0>0,y0>0),则x02+y02=3.所以直线l的方程为y=-x0y0(x-x0)+y0,即y=-x0y0x+3y0.由x24+y2=1,y=-x0y0x+3y0消去y,得(4x02+y02)x2-24x0x+36-4y02=0.(*)因为直线l与椭圆C有且只有一个公共点,所以=(-24x0)2-4(4x02+y02)(36-4y02)=48y02(x02-2)=0.因为x0,y0>0,所以x0=2,y0=1.因此,点P的坐标为(2,1).因为三角形OAB的面积为267,所以12ABOP=267,从而AB=427.设A(x1,y1),B(x2,y2),由(*)得x1,2=24x048y02(x02-2)2(4x02+y02),所以AB2=(x1-x2)2+(y1-y2)2=1+x02y0248y02(x02-2)(4x02+y02)2.因为x02+y02=3,所以AB2=16(x02-2)(x02+1)2=3249,即2x04-45x02+100=0.解得x02=52(x02=20舍去),则y02=12,因此P的坐标为102,22.则直线l的方程为y=-5x+32.解法二:(1)由题意知c=3,所以圆O的方程为x2+y2=3,因为点3,12在椭圆上,所以2a=(3-3)2+12-02+(3+3)2+12-02=4,所以a=2.因为a2=b2+c2,所以b=1,所以椭圆C的方程为x24+y2=1.(2)由题意知直线l与圆O和椭圆C均相切,且切点在第一象限,所以直线l的斜率k存在且k<0,设直线l的方程为y=kx+m(k<0,m>0),将直线l的方程代入圆O的方程,得x2+(kx+m)2=3,整理得(k2+1)x2+2kmx+m2-3=0,因为直线l与圆O相切,所以=(2km)2-4(k2+1)(m2-3)=0,整理得m2=3k2+3,将直线l的方程代入椭圆C的方程,得x24+(kx+m)2=1,整理得(4k2+1)x2+8kmx+4m2-4=0,因为直线l与椭圆C相切,所以=(8km)2-4(4k2+1)(4m2-4)=0,整理得m2=4k2+1,所以3k2+3=4k2+1,因为k<0,所以k=-2,则m=3,将k=-2,m=3代入(k2+1)x2+2kmx+m2-3=0,整理得x2-22x+2=0,解得x1=x2=2,将x=2代入x2+y2=3,解得y=1(y=-1舍去),所以点P的坐标为(2,1).设A(x1,kx1+m),B(x2,kx2+m),由知m2=3k2+3,且k<0,m>0,因为直线l和椭圆C相交,所以结合的过程知m2<4k2+1,解得k<-2,将直线l的方程和椭圆C的方程联立可得(4k2+1)x2+8kmx+4m2-4=0,解得x1,2=-8km44k2+1-m22(4k2+1),所以|x1-x2|=44k2+1-m24k2+1,因为AB=(x1-x2)2+(kx1-kx2)2=|x1-x2|k2+1=44k2+1-m24k2+1k2+1,O到l的距离d=|m|k2+1=3,所以SOAB=1244k2+1-m24k2+1k2+1|m|k2+1=124k2-24k2+1k2+13=267,解得k2=5,因为k<0,所以k=-5,则m=32,即直线l的方程为y=-5x+32.2.(2018北京,20,14分)已知椭圆M:x2a2+y2b2=1(a>b>0)的离心率为63,焦距为22.斜率为k的直线l与椭圆M有两个不同的交点A,B.(1)求椭圆M的方程;(2)若k=1,求|AB|的最大值;(3)设P(-2,0),直线PA与椭圆M的另一个交点为C,直线PB与椭圆M的另一个交点为D.若C,D和点Q-74,14共线,求k.答案(1)由题意得a2=b2+c2,ca=63,2c=22,解得a=3,b=1.所以椭圆M的方程为x23+y2=1.(2)设直线l的方程为y=x+m,A(x1,y1),B(x2,y2).由y=x+m,x23+y2=1得4x2+6mx+3m2-3=0.所以x1+x2=-3m2,x1x2=3m2-34.|AB|=(x2-x1)2+(y2-y1)2=2(x2-x1)2=2(x1+x2)2-4x1x2=12-3m22.当m=0,即直线l过原点时,|AB|最大,最大值为6.(3)设A(x1,y1),B(x2,y2).由题意得x12+3y12=3,x22+3y22=3.直线PA的方程为y=y1x1+2(x+2).由y=y1x1+2(x+2),x2+3y2=3,得(x1+2)2+3y12x2+12y12x+12y12-3(x1+2)2=0.设C(xC,yC).所以xC+x1=-12y12(x1+2)2+3y12=4x12-124x1+7.所以xC=4x12-124x1+7-x1=-12-7x14x1+7.所以yC=y1x1+2(xC+2)=y14x1+7.设D(xD,yD).同理得xD=-12-7x24x2+7,yD=y24x2+7.记直线CQ,DQ的斜率分别为kCQ,kDQ,则kCQ-kDQ=y14x1+7-14-12-7x14x1+7+74-y24x2+7-14-12-7x24x2+7+74=4(y1-y2-x1+x2).因为C,D,Q三点共线,所以kCQ-kDQ=0.故y1-y2=x1-x2.所以直线l的斜率k=y1-y2x1-x2=1.C组教师专用题组考点一椭圆的定义及标准方程1.(2015广东,8,5分)已知椭圆x225+y2m2=1(m>0)的左焦点为F1(-4,0),则m=()A.2B.3C.4D.9答案B2.(2014大纲全国,9,5分)已知椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点为F1、F2,离心率为33,过F2的直线l交C于A、B两点.若AF1B的周长为43,则C的方程为()A.x23+y22=1B.x23+y2=1C.x212+y28=1D.x212+y24=1答案A3.(2016四川,20,13分)已知椭圆E:x2a2+y2b2=1(a>b>0)的一个焦点与短轴的两个端点是正三角形的三个顶点,点P3,12在椭圆E上.(1)求椭圆E的方程;(2)设不过原点O且斜率为12的直线l与椭圆E交于不同的两点A,B,线段AB的中点为M,直线OM与椭圆E交于C,D,证明:|MA|MB|=|MC|MD|.答案(1)由已知,a=2b.又椭圆x2a2+y2b2=1(a>b>0)过点P3,12,故34b2+14b2=1,解得b2=1.所以椭圆E的方程是x24+y2=1.(2)证明:设直线l的方程为y=12x+m(m0),A(x1,y1),B(x2,y2),由方程组x24+y2=1,y=12x+m,得x2+2mx+2m2-2=0,方程的判别式为=4(2-m2),由>0,即2-m2>0,解得-2<m<2.由得x1+x2=-2m,x1x2=2m2-2.所以M点坐标为-m,m2,直线OM方程为y=-12x,由方程组x24+y2=1,y=-12x,得C-2,22,D2,-22.所以|MC|MD|=52(-m+2)52(2+m)=54(2-m2).又|MA|MB|=14|AB|2=14(x1-x2)2+(y1-y2)2=516(x1+x2)2-4x1x2=5164m2-4(2m2-2)=54(2-m2),所以|MA|MB|=|MC|MD|.4.(2015天津,19,14分)已知椭圆x2a2+y2b2=1(a>b>0)的上顶点为B,左焦点为F,离心率为55.(1)求直线BF的斜率;(2)设直线BF与椭圆交于点P(P异于点B),过点B且垂直于BP的直线与椭圆交于点Q(Q异于点B),直线PQ与y轴交于点M,|PM|=|MQ|.(i)求的值;(ii)若|PM|sinBQP=759,求椭圆的方程.答案(1)设F(-c,0).由已知离心率ca=55及a2=b2+c2,可得a=5c,b=2c.又因为B(0,b),F(-c,0),故直线BF的斜率k=b-00-(-c)=2cc=2.(2)设点P(xP,yP),Q(xQ,yQ),M(xM,yM).(i)由(1)可得椭圆的方程为x25c2+y24c2=1,直线BF的方程为y=2x+2c.将直线方程与椭圆方程联立,消去y,整理得3x2+5cx=0,解得xP=-5c3.因为BQBP,所以直线BQ的方程为y=-12x+2c,与椭圆方程联立,消去y,整理得21x2-40cx=0,解得xQ=40c21.又因为=|PM|MQ|,及xM=0,可得=|xM-xP|xQ-xM|=|xP|xQ|=78.(ii)由(i)有|PM|MQ|=78,所以|PM|PM|+|MQ|=77+8=715,即|PQ|=157|PM|.又因为|PM|sinBQP=759,所以|BP|=|PQ|sinBQP=157|PM|sinBQP=553.又因为yP=2xP+2c=-43c,所以|BP|=0+5c32+2c+4c32=553c,因此553c=553,得c=1.所以,椭圆方程为x25+y24=1.5.(2015重庆,21,12分)如图,椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,过F2的直线交椭圆于P,Q两点,且PQPF1.(1)若|PF1|=2+2,|PF2|=2-2,求椭圆的标准方程;(2)若|PQ|=|PF1|,且34<43,试确定椭圆离心率e的取值范围.答案(1)由椭圆的定义得,2a=|PF1|+|PF2|=(2+2)+(2-2)=4,故a=2.设椭圆的半焦距为c,由已知PF1PF2,因此2c=|F1F2|=|PF1|2+|PF2|2=(2+2)2+(2-2)2=23,即c=3,从而b=a2-c2=1.故所求椭圆的标准方程为x24+y2=1.(2)如图,由PF1PQ,|PQ|=|PF1|,得|QF1|=|PF1|2+|PQ|2=1+2|PF1|.由椭圆的定义得,|PF1|+|PF2|=2a,|QF1|+|QF2|=2a,进而|PF1|+|PQ|+|QF1|=4a.于是(1+1+2)|PF1|=4a,解得|PF1|=4a1+1+2,故|PF2|=2a-|PF1|=2a(+1+2-1)1+1+2.由勾股定理得|PF1|2+|PF2|2=|F1F2|2=(2c)2=4c2,从而4a1+1+22+2a(+1+2-1)1+1+22=4c2,两边除以4a2,得4(1+1+2)2+(+1+2-1)2(1+1+2)2=e2.若记t=1+1+2,则上式变成e2=4+(t-2)2t2=81t-142+12.由34<43,并注意到t=1+1+2关于的单调性,得3t<4,即14<1t13.进而12<e259,即22<e53.6.(2013课标,21,12分)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.(1)求C的方程;(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.答案由已知得圆M的圆心为M(-1,0),半径r1=1;圆N的圆心为N(1,0),半径r2=3.设圆P的圆心为P(x,y),半径为R.(1)因为圆P与圆M外切并且与圆N内切,所以|PM|+|PN|=(R+r1)+(r2-R)=r1+r2=4.由椭圆的定义可知,曲线C是以M、N为左、右焦点,长半轴长为2,短半轴长为3的椭圆(左顶点除外),其方程为x24+y23=1(x-2).(2)对于曲线C上任意一点P(x,y),由于|PM|-|PN|=2R-22,所以R2,当且仅当圆P的圆心为(2,0)时,R=2.所以当圆P的半径最长时,其方程为(x-2)2+y2=4.若l的倾斜角为90,则l与y轴重合,可得|AB|=23.若l的倾斜角不为90,由r1R知l不平行于x轴,设l与x轴的交点为Q,则|QP|QM|=Rr1,可求得Q(-4,0),所以可设l:y=k(x+4).由l与圆M相切得|3k|1+k2=1,解得k=24.当k=24时,将y=24x+2代入x24+y23=1,并整理得7x2+8x-8=0,解得x1,2=-4627.所以|AB|=1+k2|x2-x1|=187.当k=-24时,由图形的对称性可知|AB|=187.综上,|AB|=23或|AB|=187.考点二椭圆的几何性质1.(2017浙江,2,4分)椭圆x29+y24=1的离心率是()A.133 B.53C.23 D.59答案B2.(2015福建,11,5分)已知椭圆E:x2a2+y2b2=1(a>b>0)的右焦点为F,短轴的一个端点为M,直线l:3x-4y=0交椭圆E于A,B两点.若|AF|+|BF|=4,点M到直线l的距离不小于45,则椭圆E的离心率的取值范围是()A.0,32 B.0,34C.32,1 D.34,1答案A3.(2013课标,5,5分)设椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1、F2,P是C上的点,PF2F1F2,PF1F2=30,则C的离心率为()A.36 B.13 C.12D.33答案D4.(2012课标全国,4,5分)设F1、F2是椭圆E:x2a2+y2b2=1(a>b>0)的左、右焦点,P为直线x=3a2上一点,F2PF1是底角为30的等腰三角形,则E的离心率为()A.12 B.23 C.34D.45答案C5.(2011课标,4,5分)椭圆x216+y28=1的离心率为()A.13 B.12 C.33D.22答案D6.(2010全国,16,5分)已知F是椭圆C的一个焦点,B是短轴的一个端点,线段BF的延长线交C于点D,且BF=2FD,则C的离心率为.答案337.(2017天津,20,14分)已知椭圆x2a2+y2b2=1(a>b>0)的左焦点为F(-c,0),右顶点为A,点E的坐标为(0,c),EFA的面积为b22.(1)求椭圆的离心率;(2)设点Q在线段AE上,|FQ|=32c,延长线段FQ与椭圆交于点P,点M,N在x轴上,PMQN,且直线PM与直线QN间的距离为c,四边形PQNM的面积为3c.(i)求直线FP的斜率;(ii)求椭圆的方程.答案(1)设椭圆的离心率为e.由已知,可得12(c+a)c=b22.又由b2=a2-c2,可得2c2+ac-a2=0,即2e2+e-1=0.又因为0<e<1,解得e=12.所以,椭圆的离心率为12.(2)(i)依题意,设直线FP的方程为x=