欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022年初一实数所有知识点总结和常考题提高难题压轴题练习 .pdf

    • 资源ID:25192076       资源大小:548.98KB        全文页数:19页
    • 资源格式: PDF        下载积分:4.3金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要4.3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022年初一实数所有知识点总结和常考题提高难题压轴题练习 .pdf

    第1页(共 19页)初一实数所有知识点总结和常考题知识点:一、实数的概念及分类1、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数整数包括正整数、零、负整数。正整数又叫自然数。正整数、零、负整数、正分数、负分数统称为有理数。2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率 ,或化简后含有的数,如3+8 等;(3)有特定结构的数,如0.1010010001等;二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数 (只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果 a 与 b 互为相反数,则有 a+b=0,a=b,反之亦成立。2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a| 0。零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则 a 0;若|a|=-a ,则 a 0。正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。3、倒数如果 a 与 b 互为倒数,则有 ab=1, 反之亦成立。倒数等于本身的数是1 和-1。零没有倒数。4. 实数与数轴上点的关系:每一个无理数都可以用数轴上的一个点表示出来,数轴上的点有些表示有理数,有些表示无理数,实数与数轴上的点就是一一对应的, 即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数。三、平方根、算数平方根和立方根1、平方根(1)平方根的定义: 如果 一个数 x 的平方 等于 a,那么这个数x 就叫做 a的 平方根 即:如果ax2,那么 x 叫做 a 的平方根精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 19 页第2页(共 19页)(2)开平方的定义:求一个数的平方根 的运算 ,叫做 开平方开平方运算的 被开方数必须是 非负数 才 有意义。(3)平方与 开平方互为逆运算:3 的平方等于9, 9的平方根是3(4)一个 正数 有两个平方根, 即正数 进行 开平方 运算有 两个 结果 ;一个 负数没有平方根,即 负数不能 进行 开平方 运算(5)符号: 正数 a 的正的平方根 可用a表示,a也是 a 的算术平方根;正数 a 的负的平方根 可用 -a表示 (6)ax2 axa 是 x 的平方x 的平方是a x 是 a的平方根a 的平方根是x 2、算术平方根(1)算术平方根的定义: 一般地,如果 一个正数x 的平方 等于 a,即ax2,那么这个正数 x 叫做 a 的算术平方根 a 的算术平方根记为a,读作 “ 根号a” ,a 叫做 被开方数规定: 0 的算术平方根是0. 也就是,在等式ax2(x 0)中,规定ax。(2)a的结果有 两种情况: 当 a 是完全平方数 时,a是一个 有限数;当 a 不是一个完全平方数时,a是一个 无限不循环小数。(3)当 被开方数扩大时,它的 算术平方根 也扩大;当被开方数缩小时与它的算术平方根也缩小 。(4)夹值法 及估计一个(无理)数的大小(5)ax2(x 0) axa 是 x 的平方x 的平方是a x 是 a 的算术平方根a 的算术平方根是x (6)正数和零的算术平方根都只有一个,零的算术平方根是零。a(a0)0aaa2;注意a的双重非负性:-a(a0)a0 (7)平方根 和算术平方根 两者既有区别又有联系:区别在于 正数的平方根有两个,而它的 算术平方根只有一个;联系在于 正数 的正平方根 就是它的 算术平方根 ,而 正数的负平方根是它的 算术平方根的相反数。3、立方根(1)立方根的定义:如果一个数 x 的立方 等于a, 这个数叫做a的 立方根 (也叫做 三次方根 ) ,即如果3xa, 那么x叫做a的立方根精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 19 页第3页(共 19页)(2)一个数a的立方根, 记作3a,读作: “ 三次根号a” ,其中a叫被开方数, 3 叫根指数, 不能省略 ,若省略表示平方。(3) 一个 正数 有一个 正的立方根;0 有一个立方根,是它本身;一个 负数 有一个 负的立方根 ;任何数 都有 唯一 的立方根 。(4)利用 开立方 和立方互为逆运算关系,求一个数的立方根,就可以利用这种互逆关系,检验其正确性,求负数的立方根,可以先求出这个负数的绝对值的立方根,再取其相反数,即330aa a。(5)ax3 3axa 是 x 的立方x 的立方是a x 是 a的立方根a 的立方根是x (6)33aa,这说明三次根号内的负号可以移到根号外面。四、科学记数法和近似数1、有效数字一个近似数四舍五入到哪一位,就说它精确到哪一位,这时, 从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。2、科学记数法把一个数写做na10的形式,其中101a,n 是整数,这种记数法叫做科学记数法。五、实数大小的比较1、数轴规定了原点、 正方向和单位长度的直线叫做数轴(画数轴时, 要注意三要素缺一不可)。解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。2、实数大小比较的几种常用方法(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。(2)求差比较:设a、b 是实数,,0baba,0babababa0(3) 求商比较法: 设 a、 b 是两正实数,;1;1;1babababababa(4)绝对值比较法:设a、 b 是两负实数,则baba。(5)平方法:设a、b 是两负实数,则baba22。六、实数的运算精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 19 页第4页(共 19页)1、加法交换律abba2、加法结合律)()(cbacba3、乘法交换律baab4、乘法结合律)()(bcacab5、乘法对加法的分配律acabcba)(6、实数混合运算时,对于运算顺序有什么规定?实数混合运算时,将运算分为三级,加减为一级运算,乘除为二能为运算,乘方为三级运算。同级运算时,从左到右依次进行;不是同级的混合运算,先算乘方,再算乘除,而后才算加减;运算中如有括号时,先做括号内的运算,按小括号、中括号、大括号的顺序进行。7、有理数除法运算法则就什么?两有理数除法运算法则可用两种方式来表述:第一,除以一个不等于零的数,等于乘以这个数的倒数;第二,两数相除,同号得正,异号得负,并把绝对值相除。零除以任何一个不为零的数,商都是零。8、什么叫有理数的乘方?幂?底数?指数?相同因数相乘积的运算叫乘方,乘方的结果叫幂,相同因数的个数叫指数,这个因数叫底数。记作 : an9、有理数乘方运算的法则是什么?负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数。零的任何正整数幂都是零。10、加括号和去括号时各项的符号的变化规律是什么?去(加)括号时如果括号外的因数是正数,去(加)括号后式子各项的符号与原括号内的式子相应各项的符号相同;括号外的因数是负数去(加) 括号后式子各项的符号与原括号内式子相应各项的符号相反。常考题:一选择题(共13小题)19 的平方根为()A3 B3 C 3 D2的算术平方根是()A2 B2 C D3下列各组数中,互为相反数的一组是()A2 与B2 与C2 与D| 2| 与 24如图,数轴上 A,B两点分别对应实数 a,b,则下列结论正确的是()Aa+b0 Bab0 Cab0 D| a| | b| 05估算2 的值()A在 1 到 2 之间B在 2 到 3 之间C在 3 到 4 之间D在 4 到 5 之间6估计的值()A在 3 到 4 之间B在 4 到 5 之间C在 5 到 6 之间D在 6 到 7 之间精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 19 页第5页(共 19页)7估计+3 的值()A在 5 和 6 之间B在 6 和 7 之间C在 7 和 8 之间D在 8 和 9 之间8一个正方形的面积是15,估计它的边长大小在()A2 与 3 之间B3 与 4 之间C 4 与 5 之间D5 与 6 之间9如图,在数轴上表示实数的点可能是()A点 P B 点 Q C 点 M D点 N10数轴上表示 1,的对应点分别为 A,B,点 B 关于点 A 的对称点为 C,则点 C所表示的数是()A1 B1C2D211下列说法不正确的是()A1 的平方根是 1 B1 的立方根是 1C是 2 的平方根D3是的平方根12下列各数中, 3.14159,0.131131113 (相邻两个 3 之间 1 的个数逐次加 1 个) , ,无理数的个数有()A1 个 B 2 个 C 3 个 D4 个13实数 a,b,c 在数轴上对应的点如图所示,则下列式子中正确的是()Aacbc B| ab| =ab C abc Dacbc二填空题(共13小题)14的平方根是158 的立方根是16的算术平方根是17()2=18已知 a、b 为两个连续的整数,且,则 a+b=19已知一个正数的平方根是3x2 和 5x+6,则这个数是20若实数 a、b 满足| a+2|,则=21比较大小: 3222=235的小数部分是24比较大小:(填“ ”“”“ =”) 25若 x,y 为实数,且,则( x+y)2010的值为精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 19 页第6页(共 19页)26若将三个数表示在数轴上,其中能被如图所示的墨迹覆盖的数是三解答题(共14小题)27计算: (2)2+(3)228计算: (2)2+|1| 29求值:+()2+(1)201530阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理, 因为的整数部分是 1,将这个数减去其整数部分,差就是小数部分又例如:,即,的整数部分为 2,小数部分为请解答: (1)如果的小数部分为 a,的整数部分为 b,求的值;(2)已知:,其中 x 是整数,且 0y1,求 xy 的相反数31已知: x2 的平方根是 2,2x+y+7 的立方根是 3,求 x2+y2的算术平方根32已知, a、b 互为倒数, c、d 互为相反数,求的值33设 2+的整数部分和小数部分分别是x、y,试求 x、y 的值与 x1 的算术平方根34计算: (2)2(35)+2( 3)35 (1)有这样一个问题:与下列哪些数相乘,结果是有理数?A、; B、; C、; D、; E、 0, 问题的答案是(只需填字母):;(2)如果一个数与相乘的结果是有理数,则这个数的一般形式是什么(用代数式表示)36求值:已知 y=x25,且 y 的算术平方根是 2,求 x 的值37画一条数轴,把 1,2 各数和它们的相反数在数轴上表示出来,并比较它们的大小,用 “ ” 号连接38求 x 的值:(1)4x2=25;(2) (x0.7)3=0.02739已知 2a1 的平方根是 3,3a+b1 的算术平方根是4,求 12a+2b 的立方根40已知 M=是 m+3 的算术平方根, N=是 n2 的立方根,试精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 19 页第7页(共 19页)求 MN 的值精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 7 页,共 19 页第8页(共 19页)初一实数所有知识点总结和常考题提高难题压轴题练习( 含答案解析 )参考答案与试题解析一选择题(共13小题)1 (2017?武汉模拟) 9 的平方根为()A3 B3 C 3 D【分析】 根据平方根的定义求解即可,注意一个正数的平方根有两个【解答】 解:9 的平方根有:=3故选 C【点评】此题考查了平方根的知识, 属于基础题, 解答本题关键是掌握一个正数的平方根有两个,且互为相反数2 (2015?日照)的算术平方根是()A2 B2 C D【分析】 先求得的值,再继续求所求数的算术平方根即可【解答】 解:=2,而 2 的算术平方根是,的算术平方根是,故选: C【点评】此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A 的错误3 (2002?杭州)下列各组数中,互为相反数的一组是()A2 与B2 与C2 与D| 2| 与 2【分析】 根据相反数的概念、性质及根式的性质化简即可判定选择项【解答】 解:A、=2,2 与 2 互为相反数,故选项正确;B、=2,2 与2 不互为相反数,故选项错误;C、2 与不互为相反数,故选项错误;D、| 2| =2,2 与 2 不互为相反数,故选项错误故选 A【点评】本题考查的是相反数的概念,只有符号不同的两个数叫互为相反数如果两数互为相反数,它们的和为04 (2009?江苏)如图,数轴上A,B 两点分别对应实数a,b,则下列结论正确的是()精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 8 页,共 19 页第9页(共 19页)Aa+b0 Bab0 Cab0 D| a| | b| 0【分析】 本题要先观察 a,b 在数轴上的位置,得b10a1,然后对四个选项逐一分析【解答】 解:A、b10a1,| b| | a| ,a+b0,故选项 A 错误;B、b10a1,ab0,故选项 B错误;C、b10a1,ab0,故选项 C正确;D、b10a1,| a| | b| 0,故选项 D错误故选: C【点评】 本题考查了实数与数轴的对应关系, 数轴上右边的数总是大于左边的数5 (2015?新疆)估算2 的值()A在 1 到 2 之间B在 2 到 3 之间C在 3 到 4 之间D在 4 到 5 之间【分析】 先估计的整数部分,然后即可判断2 的近似值【解答】 解: 56,324故选 C【点评】此题主要考查了无理数的估算能力,现实生活中经常需要估算, 估算应是我们具备的数学能力,“ 夹逼法 ” 是估算的一般方法,也是常用方法6 (2014?营口)估计的值()A在 3 到 4 之间B在 4 到 5 之间C在 5 到 6 之间D在 6 到 7 之间【分析】应先找到所求的无理数在哪两个和它接近的整数之间,然后判断出所求的无理数的范围【解答】 解: 56,在 5 到 6 之间故选: C【点评】此题主要考查了估算无理数的那就,“ 夹逼法 ” 是估算的一般方法,也是常用方法7 (2006?沈阳)估计+3 的值()A在 5 和 6 之间B在 6 和 7 之间C在 7 和 8 之间D在 8 和 9 之间【分析】 先估计的整数部分,然后即可判断+3 的近似值【解答】 解: 42=16,52=25,所以,所以+3 在 7 到 8 之间故选: C【点评】此题主要考查了估算无理数的大小的能力,理解无理数性质, 估算其数值现实生活中经常需要估算,估算应是我们具备的数学能力,“ 夹逼法 ” 是估算的一般方法,也是常用方法8 (2012?义乌市)一个正方形的面积是15,估计它的边长大小在()精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 9 页,共 19 页第10页(共 19页)A2 与 3 之间B3 与 4 之间C 4 与 5 之间D5 与 6 之间【分析】 先根据正方形的面积是15 计算出其边长,在估算出该数的大小即可【解答】 解:一个正方形的面积是15,该正方形的边长为,91516,34故选 B【点评】本题考查的是估算无理数的大小及正方形的性质,根据题意估算出的取值范围是解答此题的关键9 (2008?遵义)如图,在数轴上表示实数的点可能是()A点 P B 点 Q C 点 M D点 N【分析】 先对进行估算,再确定是在哪两个相邻的整数之间,然后确定对应的点即可解决问题【解答】 解:3.87,34,对应的点是 M故选 C【点评】本题考查实数与数轴上的点的对应关系,应先看这个无理数在哪两个有理数之间,进而求解10 (2006?西岗区)数轴上表示1,的对应点分别为 A,B,点 B 关于点 A 的对称点为 C,则点 C所表示的数是()A1 B1C2D2【分析】 首先根据数轴上表示1,的对应点分别为A,B 可以求出线段 AB 的长度,然后由 AB=AC利用两点间的距离公式便可解答【解答】 解:数轴上表示 1,的对应点分别为 A,B,AB=1,点 B关于点 A 的对称点为 C,AC=AB 点 C的坐标为: 1(1)=2故选: C【点评】本题考查的知识点为: 求数轴上两点间的距离就让右边的数减去左边的数知道两点间的距离,求较小的数,就用较大的数减去两点间的距离11 (2012 秋?安新县期末)下列说法不正确的是()A1 的平方根是 1 B1 的立方根是 1C是 2 的平方根D3是的平方根【分析】 A、根据平方根的定义即可判定;精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 10 页,共 19 页第11页(共 19页)B、根据立方根的定义即可判定;C、根据平方根的定义即可判定;D、根据平方根的定义即可判定【解答】 解:A、1 的平方根是 1,故 A 选项正确;B、1 的立方根是 1,故 B选项正确;C、是 2 的平方根,故 C选项正确;D、=3,3 的平方根是,故 D 选项错误故选: D【点评】本题考查了平方根的定义 注意一个正数有两个平方根,它们互为相反数;0 的平方根是 0;负数没有平方根12 (2013?安顺)下列各数中, 3.14159,0.131131113 (相邻两个 3 之间 1 的个数逐次加 1 个) , ,无理数的个数有()A1 个 B 2 个 C 3 个 D4 个【分析】 无限不循环小数为无理数,由此可得出无理数的个数【解答】 解:由定义可知无理数有:0.131131113 , ,共两个故选: B【点评】此题主要考查了无理数的定义, 其中初中范围内学习的无理数有: ,2等;开方开不尽的数;以及像0.1010010001 ,等有这样规律的数13 (2015?枣庄)实数 a,b,c 在数轴上对应的点如图所示,则下列式子中正确的是()Aacbc B| ab| =ab C abc Dacbc【分析】 先根据各点在数轴上的位置比较出其大小,再对各选项进行分析即可【解答】 解:由图可知, ab0c,A、acbc,故 A 选项错误;B、ab,ab0,| ab| =ba,故 B选项错误;C、ab0,ab,故 C选项错误;D、 ab,c0,acbc,故 D 选项正确故选: D【点评】本题考查的是实数与数轴, 熟知数轴上各点与实数是一一对应关系是解答此题的关键二填空题(共13小题)14 (2015?庆阳)的平方根是2精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 11 页,共 19 页第12页(共 19页)【分析】 根据平方根的定义,求数a 的平方根,也就是求一个数x,使得 x2=a,则 x 就是 a 的平方根,由此即可解决问题【解答】 解:的平方根是 2故答案为: 2【点评】本题考查了平方根的定义 注意一个正数有两个平方根,它们互为相反数;0 的平方根是 0;负数没有平方根15 (2015?茂名) 8 的立方根是2【分析】 利用立方根的定义即可求解【解答】 解:( 2)3=8,8 的立方根是 2故答案为: 2【点评】 本题主要考查了平方根和立方根的概念如果一个数x 的立方等于 a,即 x 的三次方等于 a (x3=a) , 那么这个数 x就叫做 a 的立方根,也叫做三次方根读作“ 三次根号 a” 其中, a 叫做被开方数, 3 叫做根指数16 (2009?峨边县模拟)的算术平方根是3【分析】首先根据算术平方根的定义求出的值,然后即可求出其算术平方根【解答】 解:=9,又( 3)2=9,9 的平方根是 3,9 的算术平方根是 3即的算术平方根是 3故答案为: 3【点评】此题主要考查了算术平方根的定义,解题的关键是知道,实际上这个题是求 9 的算术平方根是 3注意这里的双重概念17 (2009?江苏)()2=3【分析】 直接根据平方的定义求解即可【解答】 解:()2=3,()2=3【点评】 本题考查了数的平方运算,是基本的计算能力18 (2012?枣庄)已知 a、b 为两个连续的整数, 且,则 a+b=11【分析】 根据无理数的性质,得出接近无理数的整数,即可得出a,b 的值,即可得出答案【解答】 解:,a、b 为两个连续的整数,a=5,b=6,a+b=11故答案为: 11【点评】此题主要考查了无理数的大小, 得出比较无理数的方法是解决问题的关精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 12 页,共 19 页第13页(共 19页)键19(2009?凉山州)已知一个正数的平方根是3x2 和 5x+6, 则这个数是【分析】由于一个非负数的平方根有2 个,它们互为相反数 依此列出方程求解即可【解答】 解:根据题意可知: 3x2+5x+6=0,解得 x=,所以 3x2=,5x+6= ,()2=故答案为:【点评】 本题主要考查了平方根的逆运算,平时注意训练逆向思维20 (2013?东莞市)若实数 a、b 满足| a+2|,则=1【分析】根据非负数的性质列出方程求出a、b 的值,代入所求代数式计算即可【解答】 解:根据题意得:,解得:,则原式 =1故答案是: 1【点评】本题考查了非负数的性质: 几个非负数的和为0 时,这几个非负数都为021 (2014?射阳县三模)比较大小:32【分析】 先把两数平方,再根据实数比较大小的方法即可比较大小【解答】 解:( 3)2=18, (2)2=12,32故答案为:【点评】 此题主要考查了实数的大小的比较,实数大小比较法则:(1)正数大于 0,0 大于负数,正数大于负数;(2)两个负数,绝对值大的反而小22 (2013?南平)=3【分析】 33=27,根据立方根的定义即可求出结果【解答】 解: 33=27,;精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 13 页,共 19 页第14页(共 19页)故答案为: 3【点评】 本题考查了立方根的定义; 掌握开立方和立方互为逆运算是解题的关键23 (2014?辽阳) 5的小数部分是2【分析】 根据 12,不等式的性质3,可得的取值范围,再根据不等式的性质 1,可得答案【解答】 解:由 12,得21不等式的两边都加5,得52551,即 354,5的小数部分是( 5)3=2,故答案为: 2【点评】本题考查了估算无理数的大小,利用了不等式的性质: 不等式的两边都乘以或除以同一个负数, 不等号的方向改变, 不等式的两边都加同一个数,不等号的方向不变24 (2014?岳麓区校级自主招生)比较大小:(填“ ”“”“ =”) 【分析】 因为分母相同所以比较分子的大小即可,可以估算的整数部分,然后根据整数部分即可解决问题【解答】 解:11,故填空结果为:【点评】此题主要考查了实数的大小的比较,比较两个实数的大小, 可以采用作差法、取近似值法、比较n 次方的方法等当分母相同时比较分子的大小即可25 (2010?成都)若 x,y 为实数,且,则(x+y)2010的值为1【分析】先根据非负数的性质列出方程组,求出x、y 的值,然后代入( x+y)2010中求解即可【解答】 解:由题意,得: x+2=0,y3=0,解得 x=2,y=3;因此( x+y)2010=1故答案为: 1【点评】本题考查了非负数的性质: 有限个非负数的和为零, 那么每一个加数也必为零26 (2010?河南)若将三个数表示在数轴上,其中能被如图所示的墨迹覆盖的数是【分析】 首先利用估算的方法分别得到,前后的整数(即它们分精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 14 页,共 19 页第15页(共 19页)别在那两个整数之间) ,从而可判断出被覆盖的数【解答】 解: 2 1,23,34,且墨迹覆盖的范围是 13,能被墨迹覆盖的数是【点评】 本题考查了实数与数轴的对应关系,以及估算无理数大小的能力三解答题(共14小题)27 (2014?钦州)计算:(2)2+(3)2【分析】 原式第一项利用乘方的意义化简, 第二项利用异号两数相乘的法则计算,最后一项利用平方根定义化简,计算即可得到结果【解答】 解:原式 =463=5【点评】 此题考查了实数的运算,熟练掌握运算法则是解本题的关键28 (2015?乌鲁木齐)计算:(2)2+|1| 【分析】 原式第一项利用乘方的意义化简,第二项利用绝对值的代数意义化简,最后一项利用立方根定义计算即可得到结果【解答】 解:原式 =4+13=【点评】 此题考查了实数的运算,熟练掌握运算法则是解本题的关键29 (2015?大庆)求值:+()2+(1)2015【分析】原式第一项利用算术平方根定义计算,第二项利用乘方的意义化简,第三项利用乘方的意义化简,计算即可得到结果【解答】 解:原式 = +1=【点评】 此题考查了实数的运算,熟练掌握运算法则是解本题的关键30 (2014 春?嘉祥县期末)阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理, 因为的整数部分是 1,将这个数减去其整数部分,差就是小数部分又例如:,即,的整数部分为 2,小数部分为请解答: (1)如果的小数部分为 a,的整数部分为 b,求的值;(2)已知:,其中 x 是整数,且 0y1,求 xy 的相反数【分析】 (1)先估计、的近似值,然后判断的小数部分 a,的整数部分 b,最后将 a、b 的值代入并求值;(2)先估计的近似值,然后判断的整数部分并求得x、y 的值,最后求xy 的相反数【解答】 解: 459,精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 15 页,共 19 页第16页(共 19页)23,的小数部分 a=2 91316,34,的整数部分为 b=3 把代入,得2+3=1,即(2)139,13,的整数部分是 1、小数部分是,10+=10+1+(=11+() ,又,11+()=x+y,又x 是整数,且 0y1,x=11,y=;xy=11()=12,xy 的相反数 yx=(xy)=【点评】此题主要考查了估算无理数的大小,注意首先估算无理数的值, 再根据不等式的性质进行计算 现实生活中经常需要估算, 估算应是我们具备的数学能力,“ 夹逼法 ” 是估算的一般方法,也是常用方法31 (2015 秋?偃师市期中)已知: x2 的平方根是 2,2x+y+7 的立方根是 3,求 x2+y2的算术平方根【分析】 根据平方根、立方根的定义和已知条件可知x2=4,2x+y+7=27,列方程解出 x、y,最后代入代数式求解即可【解答】 解: x2 的平方根是 2,x2=4,x=6,2x+y+7 的立方根是 32x+y+7=27把 x 的值代入解得:y=8,x2+y2的算术平方根为 10【点评】 本题主要考查了平方根、立方根的概念,难易程度适中32 (2013 秋?滨湖区校级期末)已知, a、b 互为倒数, c、d 互为相反数,求的值【分析】由 a、b 互为倒数可得 ab=1,由 c、d 互为相反数可得c+d=0,然后将以上两个代数式整体代入所求代数式求值即可【解答】 解:依题意得, ab=1,c+d=0;=精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 16 页,共 19 页第17页(共 19页)=1+0+1=0【点评】 本题主要考查实数的运算,解题关键是运用整体代入法求代数式的值,涉及到倒数、相反数的定义,要求学生灵活掌握各知识点33 (2015 秋?吉安校级期末)设 2+的整数部分和小数部分分别是x、y,试求x、y 的值与 x1 的算术平方根【分析】 先找到介于哪两个整数之间,从而找到整数部分,小数部分让原数减去整数部分,然后代入求值即可【解答】 解:因为 469,所以 23,即的整数部分是 2,所以 2+的整数部分是 4,小数部分是 2+4=2,即 x=4,y=2,所以=【点评】此题主要考查了无理数的估算能力,解题关键是估算出整数部分后,然后即可得到小数部分34 (2009?江西)计算:(2)2(35)+2( 3)【分析】根据实数的运算顺序计算即可求解注意实数混合运算的顺序: 先算乘方、开方,再算乘除,最后算加减,遇有括号,先算括号内的【解答】 解:原式 =4( 2)26=2【点评】 此题主要考查了实数的运算,解题要注意实数的混合运算顺序35 (2009?佛山) (1)有这样一个问题:与下列哪些数相乘, 结果是有理数?A、;B、;C、;D、;E、0,问题的答案是(只需填字母) :A、D、E;(2)如果一个数与相乘的结果是有理数,则这个数的一般形式是什么(用代数式表示)【分析】 (1)根据实数的乘法法则和有理数、无理数的定义即可求解;(2)根据( 1)的结果可以得到规律【解答】 解: (1)A、D、E;(2)设这个数为 x,则 x?=a(a 为有理数),所以 x=(a 为有理数)【点评】此题主要考查了实数的运算,也考查了有理数、无理数的定义,文字阅读比较多,解题时要注意审题,正确理解题意36 (2010 秋?西盟县期末)求值:已知y=x25,且 y 的算术平方根是2,求 x的值【分析】 由于被开方数应等于它算术平方根的平方那么由此可求得y,然后即可求出 x【解答】 解: y的算术平方根是2,y=4;精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 17 页,共 19 页第18页(共 19页)又y=x254=x25x2=9x=3【点评】 此题主要考查了平方根的性质:被开方数应等于它算术平方根的平方正数的平方根有2 个37 (2012 秋?上虞市校级期中)画一条数轴,把1,2 各数和它们的相反数在数轴上表示出来,并比较它们的大小,用“ ” 号连接【分析】 根据相反数的定义写出各数的相反数,再画出数轴即可解决问题【解答】 解: 1 的相反数是 1;的相反数是;2 的相反数是 2;22【点评】此题主要考查了实数的大小的比较,比较简单, 解答此题的关键是熟知相反数的概念,只有符号不同的两个数叫互为相反数38 (2015 春?定州市期中)求 x 的值:(1)4x2=25;(2) (x0.7)3=0.027【分析】 (1)可用直接开平方法进行解答;(2)可用直接开立方法进行解答【解答】 解: (1)x2=,x=(2) (x0.7)3=0.027=(0.3)3,x0.7=0.3,故 x=1【点评】本题考查了平方根和立方根的概念注意一个正数有两个平方根,它们互为相反数; 0 的平方根是 0;负数没有平方根立方根的性质:一个正数的立方根是正数,一个负数的立方根是负数,0 的立方根是 039 (2010 秋?荷塘区校级期末)已知2a1 的平方根是 3,3a+b1 的算术平方根是 4,求 12a+2b 的立方根【分析】 分别根据 2a1 的平方根是 3,3a+b1 的算术平方根是 4,求出 a、b 的值,再求出 12a+2b 的值,求出其立方根即可【解答】 解: 2a1 的平方根是 3,精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 18 页,共 19 页第19页(共 19页)2a1=(3)2,解得 a=5;3a+b1 的算术平方根是 4,3a+b1=16,把 a=5代入得, 35+b1=16,解得 b=2,12a+2b=125+4=64,=4,即 12a+2b 的立方根是 4【点评】本题考查的是立方根、 平方根及算术平方根的定义,根据题意列出关于a、b 的方程,求出 a、b 的值是解答此题的关键40(2016 春?黄冈期中)已知 M=是 m+3 的算术平方根,N=是n2 的立方根,试求 MN 的值【分析】 根据算术平方根及立方根的定义,求出M、N 的值,代入可得出 MN的平方根【解答】 解:因为 M=是 m+3 的算术平方根, N=是 n2 的立方根,所以可得: m4=2,2m4n+3=3,解得: m=6,n=3,把 m=6,n=3代入 m+3=9,n2=1,所以可得 M=3,N=1,把 M=3,N=1代入 MN=31=2【点评】本题考查了立方根、 平方根及算术平方根的定义, 属于基础题, 求出 M、N 的值是解答本题的关键精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 19 页,共 19 页

    注意事项

    本文(2022年初一实数所有知识点总结和常考题提高难题压轴题练习 .pdf)为本站会员(Che****ry)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开