欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022年八上数学知识点大全 .pdf

    • 资源ID:25229847       资源大小:110.72KB        全文页数:7页
    • 资源格式: PDF        下载积分:4.3金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要4.3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022年八上数学知识点大全 .pdf

    名师总结优秀知识点苏教版八年级上数学知识点第一章三角形全等1 全等三角形的对应边、对应角相等2 边角边公理 (SAS) 有两边和它们的夹角对应相等的两个三角形全等3 角边角公理 ( ASA)有两角和它们的夹边对应相等的两个三角形全等4 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等5 边边边公理 (SSS) 有三边对应相等的两个三角形全等6 斜边、直角边公理 (HL) 有斜边和一条直角边对应相等的两个直角三角形全等定义:能够完全重合的两个三角形叫做全等三角形。理解:全等三角形形状与大小完全相等,与位置无关;一个三角形经过平移、翻折、旋转可以得到它的全等形;三角形全等不因位置发生变化而改变。性质:(1)全等三角形的对应边相等、对应角相等。理解:长边对长边,短边对短边;最大角对最大角,最小角对最小角;对应角的对边为对应边,对应边对的角为对应角。(2)全等三角形的周长相等、面积相等。(3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。判定:边边边:三边对应相等的两个三角形全等(可简写成“SSS ”) 边角边 :两边和它们的夹角对应相等两个三角形全等(可简写成“SAS” ) 角边角 :两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”) 角角边 :两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”) 斜边.直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“ HL”) 证明两个三角形全等的基本思路:(1) 、已知两边:找第三边 (SSS ) ;找夹角(SAS) ;找是否有直角 (HL). 、已知一边一角:找夹角( AAS) ;找夹角( SAS) ;找是否有直角( HL). 、已知两边:找第三边(SSS ) ;找夹角( SAS) ;找是否有直角( HL). 第二章 轴对称1 轴对称图形和关于直线对称的两个图形2 轴对称的性质轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线;线段垂直平分线上的点到线段两个端点的距离相等;到线段两个端点距离相等的点在这条线段的垂直平分线上3 用坐标表示轴对称点(x,y)关于 x 轴对称的点的坐标是 (x,-y),关于 y轴对称的点的坐标是 (-x,y),关于原点对称的点的坐标是(-x,-y). 4 等腰三角形等腰三角形的两个底角相等; (等边对等角)等腰三角形的顶角平分线、底边上的中线、底边上的高线互相重合;(三线合一)一个三角形的两个相等的角所对的边也相等。(等角对等边)5 等边三角形的性质和判定等边三角形的三个内角都相等, 都等于 60度; 三个角都相等的三角形是等边三角形;有一个角是 60 度的等腰三角形是等边三角形;推论:直角三角形中,如果有一个锐角是30 度,那么他所对的直角边等于斜边的一半。在三角形中,大角对大边,大边对大角。第三章勾股定理直角三角形两直角边a,b 的平方和等于斜边c 的平方,即222cba精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 7 页名师总结优秀知识点2、勾股定理的逆定理如果三角形的三边长a,b,c 有关系222cba,那么这个三角形是直角三角形。3、勾股数:满足222cba的三个正整数,称为勾股数。第四章实数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于 a,即 x2=a,那么这个正数 x 就叫做 a 的算术平方根。特别地, 0 的算术平方根是0。表示方法:记作“a” ,读作根号 a。性质:正数和零的算术平方根都只有一个,零的算术平方根是零。2、平方根:一般地,如果一个数x 的平方等于 a,即 x2=a,那么这个数x就叫做 a的平方根(或二次方根) 。表示方法:正数 a的平方根记做“a” ,读作“正、负根号a” 。性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。开平方:求一个数a的平方根的运算,叫做开平方。0a注意a的双重非负性:a0 3、立方根一般地,如果一个数x 的立方等于 a,即 x3=a 那么这个数 x 就叫做 a 的立方根(或三次方根)。表示方法:记作3a性质:一个正数有一个正的立方根;一个负数有一个负的立方根; 零的立方根是零。注意:33aa,这说明三次根号内的负号可以移到根号外面。4.3、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2、无理数:无限不循环小数叫做无理数。在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 7 页名师总结优秀知识点(2)有特定意义的数,如圆周率 ,或化简后含有 的数,如3+8 等;(3)有特定结构的数,如0.1010010001等;(4)某些三角函数值,如sin60o等1、实数比较大小:正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。2、实数大小比较的几种常用方法(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。(2)求差比较:设 a、b 是实数,,0baba,0babababa0(3)求商比较法:设a 、b是两正实数,;1;1;1babababababa(4)绝对值比较法:设a、b 是两负实数,则baba。(5)平方法:设 a、b 是两负实数,则baba22。实数的运算(1)六种运算:加、减、乘、除、乘方、开方(2)实数的运算顺序先算乘方和开方, 再算乘除,最后算加减, 如果有括号, 就先算括号里面的。(3)运算律加法交换律abba加法结合律)()(cbacba乘法交换律baab乘法结合律)()(bcacab乘法对加法的分配律acabcba)(第五章平面直角坐标系一、 在平面内,确定物体的位置一般需要两个数据。二、平面直角坐标系及有关概念1、平面直角坐标系在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。 其中,水平的数轴叫做 x 轴或横轴,取向右为正方向; 铅直的数轴叫做y 轴或纵轴, 取向上为正方向; x 轴和 y 轴统称坐标轴。 它们的公共原点O 称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 7 页名师总结优秀知识点2、为了便于描述坐标平面内点的位置,把坐标平面被x 轴和 y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。注意: x 轴和 y 轴上的点(坐标轴上的点) ,不属于任何一个象限。3、点的坐标的概念对于平面内任意一点P, 过点 P 分别 x 轴、 y 轴向作垂线,垂足在上x 轴、y轴对应的数 a,b 分别叫做点 P 的横坐标、纵坐标,有序数对(a,b)叫做点 P的坐标。点的坐标用( a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当ba时,(a,b)和( b,a)是两个不同点的坐标。平面内点的与有序实数对是一一对应的。4、不同位置的点的坐标的特征(1) 、各象限内点的坐标的特征点 P(x,y)在第一象限0,0 yx点 P(x,y)在第二象限0,0 yx点 P(x,y)在第三象限0,0 yx点 P(x,y)在第四象限0,0 yx(2) 、坐标轴上的点的特征点 P(x,y)在 x 轴上0y,x 为任意实数点 P(x,y)在 y 轴上0 x,y 为任意实数点 P(x,y)既在 x 轴上,又在 y 轴上x,y 同时为零,即点 P 坐标为( 0,0)即原点(3) 、两条坐标轴夹角平分线上点的坐标的特征点 P(x,y)在第一、三象限夹角平分线(直线y=x)上x 与 y 相等点 P(x,y)在第二、四象限夹角平分线上x 与 y 互为相反数(4) 、和坐标轴平行的直线上点的坐标的特征位于平行于 x 轴的直线上的各点的纵坐标相同。位于平行于 y 轴的直线上的各点的横坐标相同。(5) 、关于 x 轴、y 轴或原点对称的点的坐标的特征点 P与点 p 关于 x 轴对称横坐标相等,纵坐标互为相反数,即点P(x,y)关于 x 轴的对称点为 P (x,-y)点 P与点 p 关于 y 轴对称纵坐标相等,横坐标互为相反数,即点P(x,y)关于 y 轴的对称点为 P (-x,y)点 P 与点 p 关于原点对称横、纵坐标均互为相反数,即点P(x,y)关精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 7 页名师总结优秀知识点于原点的对称点为P (-x,-y)(6)、点到坐标轴及原点的距离点 P(x,y)到坐标轴及原点的距离:(1)点 P(x,y)到 x 轴的距离等于y(2)点 P(x,y)到 y 轴的距离等于x(3)点 P(x,y)到原点的距离等于22yx三、坐标变化与图形变化的规律:坐标( x , y )的变化图形的变化x a 或 y a被横向或纵向拉长(压缩)为原来的 a 倍x a , y a 放大(缩小)为原来的 a 倍x ( -1 )或 y ( -1 )关于 y 轴或 x 轴对称x ( -1 ), y ( -1 )关于原点成中心对称x +a 或 y+ a 沿 x 轴或 y 轴平移 a 个单位x +a , y+ a 沿 x 轴平移 a 个单位,再沿 y 轴平移 a个单第六章 一次函数一、函数:一般地,在某一变化过程中有两个变量x 与 y,如果给定一个 x 值,相应地就确定了一个 y 值,那么我们称y 是 x 的函数,其中 x 是自变量, y 是因变量。二、自变量取值范围使函数有意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数),分式(分母不为0) 、二次根式(被开方数为非负数) 、实际意义几方面考虑。三、函数的三种表示法(1)关系式(解析)法两个变量间的函数关系, 有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。(2)列表法把自变量 x 的一系列值和函数y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法。(3)图象法用图象表示函数关系的方法叫做图象法。四、由函数关系式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。五、正比例函数和一次函数1、正比例函数和一次函数的概念精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 7 页名师总结优秀知识点一般地,若两个变量 x, y 间的关系可以表示成bkxy(k, b 为常数,k0)的形式,则称 y 是 x 的一次函数( x 为自变量, y 为因变量)。特别地,当一次函数bkxy中的 b=0时(即kxy) (k 为常数, k0) ,称 y 是 x 的正比例函数。2、一次函数的图像 : 所有一次函数的图像都是一条直线3、一次函数、正比例函数图像的主要特征:一次函数bkxy的图像是经过点( 0,b)的直线;正比例函数kxy的图像是经过原点( 0,0)的直线。k 的符号b 的符号函数图像图像特征k0 b0 y 0 x 图像经过一、二、 三象限,y 随 x 的增大而增大。b0 y 0 x 图像经过一、三、 四象限,y 随 x 的增大而增大。K0 y 0 x 图像经过一、二、 四象限,y 随 x 的增大而减小精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 7 页名师总结优秀知识点b0 时,图像经过第一、三象限,y 随 x 的增大而增大;(2)当 k0 时,y 随 x 的增大而增大(2)当 k0 时,y 随 x 的增大而减小6、正比例函数和一次函数解析式的确定确定一个正比例函数,就是要确定正比例函数定义式kxy(k0)中的常数 k。确定一个一次函数,需要确定一次函数定义式bkxy(k0)中的常数k 和 b。解这类问题的一般方法是待定系数法。7、一次函数与一元一次方程的关系:任何一个一元一次方程都可转化为:kx+b=0(k、b 为常数, k0)的形式而一次函数解析式形式正是y=kx+b(k、b 为常数, k0) 当函数值为 0 时,?即 kx+b=0 就与一元一次方程完全相同结论:由于任何一元一次方程都可转化为kx+b=0(k、b 为常数, k0)的形式所以解一元一次方程可以转化为:当一次函数值为 0 时,求相应的自变量的值从图象上看,这相当于已知直线y=kx+b 确定它与 x 轴交点的横坐标值精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 7 页,共 7 页

    注意事项

    本文(2022年八上数学知识点大全 .pdf)为本站会员(C****o)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开