2014-2017年度高考理科数列真命题汇编含规范标准答案解析.doc
*-高考数列选择题部分1. (2017年新课标理) 4记为等差数列的前项和若,则的公差为( )A1B2C4D82. ( 2017年新课标卷理) 3.我国古代数学名著算法统宗中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A1盏 B3盏 C5盏 D9盏3. (2017年新课标卷理) 9等差数列的首项为1,公差不为0若a2,a3,a6成等比数列,则前6项的和为( )A-24B-3C3D84. (2017年浙江卷) 6已知等差数列an的公差为d,前n项和为Sn,则“d>0”是“S4 + S6>2S5”的( )A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件5. (2017年新课标)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,学科*网其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是( )A440B330C220D1106. (2016全国I)(3)已知等差数列前9项的和为27,则(A)100 (B)99 (C)98 (D)977.(2016上海)已知无穷等比数列的公比为,前n项和为,且.下列条件中,使得恒成立的是( )(A) (B)(C) (D)8. (2016四川)5. 【题设】某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是(参考数据:lg 1.120.05,lg 1.30.11,lg20.30)( A)2018年 (B)2019年 (C)2020年 (D)2021年9. (2016天津)(5)设an是首项为正数的等比数列,公比为q,则“q<0”是“对任意的正整数n,a2n1+a2n<0”的( )(A)充要条件 (B)充分而不必要条件(C)必要而不充分条件 (D)既不充分也不必要条件10.(2016浙江)6. 如图,点列An,Bn分别在某锐角的两边上,且,().若A是等差数列 B是等差数列 C是等差数列 D是等差数列11. 【2015高考重庆,理2】在等差数列中,若=4,=2,则=()A、-1 B、0 C、1 D、612. 【2015高考福建,理8】若 是函数 的两个不同的零点,且 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则 的值等于( )A6 B7 C8 D913. 【2015高考北京,理6】设是等差数列. 下列结论中正确的是( )A若,则 B若,则C若,则 D若,则14. 【2015高考浙江,理3】已知是等差数列,公差不为零,前项和是,若,成等比数列,则( )A. B. C. D. 16. 【2014年重庆卷(理02)】对任意等比数列,下列说法一定正确的是( )成等比数列 成等比数列成等比数列 成等比数列17. 【2014年全国大纲卷(10)】等比数列中,则数列的前8项和等于( )A6 B5 C4 D318. 【2014年福建卷(理03)】等差数列an的前n项和为Sn,若a12,S312,则a6等于() A8 B10 C12 D14高考数列填空题部分21. ( 2017年新课标卷理) 15.等差数列的前项和为,则 22 (2017年新课标卷理)设等比数列满足a1 + a2 = 1, a1 a3 = 3,则a4 = _23. (2017年北京卷理) (10)若等差数列和等比数列满足a1=b1=1,a4=b4=8,则=_.24 (2017年江苏卷)等比数列的各项均为实数,其前项和为,已知,则= 25. (2016全国I)(15)设等比数列满足a1+a3=10,a2+a4=5,则a1a2 an的最大值为 26.(2016上海)无穷数列由k个不同的数组成,为的前n项和.若对任意,则k的最大值为_.27. (2016北京)12.已知为等差数列,为其前项和,若,则_.28 (2016江苏)8. 已知an是等差数列,Sn是其前n项和.若a1+a22=3,S5=10,则a9的值是 .(2016浙江)13.设数列an的前n项和为Sn.若S2=4,an+1=2Sn+1,nN*,则a1= ,S5= .29. 【2015高考安徽,理14】已知数列是递增的等比数列,则数列的前项和等于 .30. 【2015高考新课标2,理16】设是数列的前n项和,且,则_31. 【2015高考广东,理10】在等差数列中,若,则= .32.【2015高考陕西,理13】中位数1010的一组数构成等差数列,其末项为2015,则该数列的首项为 33. 【2015江苏高考,11】数列满足,且(),则数列的前10项和为 34. 【2014年广东卷(理13)】若等比数列的各项均为正数,且,则 。35. 【2014年江苏卷(理07)】在各项均为正数的等比数列中,若,则的值是 36. 【2014年天津卷(理11)】设是首项为,公差为的等差数列,为其前项和,若、成等比数列,则的值为_.37. 【2014年北京卷(理12)】若等差数列满足,则当_时的前项和最大.高考数列简答题部分38. (2017年北京卷理) 设和是两个等差数列,记,其中表示这个数中最大的数()若,求的值,并证明是等差数列;()证明:或者对任意正数,存在正整数,当时,;或者存在正整数,使得是等差数列39. (2017年江苏卷)对于给定的正整数,若数列满足:对任意正整数总成立,则称数列是“数列” (1)证明:等差数列是“数列”; (2)若数列既是“数列”,又是“数列”,证明:是等差数列40. (2017山东理)(本小题满分12分)已知xn是各项均为正数的等比数列,且x1+x2=3,x3-x2=2()求数列xn的通项公式;()如图,在平面直角坐标系xOy中,依次连接点P1(x1, 1),P2(x2, 2)Pn+1(xn+1, n+1)得到折线P1 P2Pn+1,学.科网求由该折线与直线y=0,x=xi(xxn)所围成的区域的面积.41. (2017年天津卷理)已知为等差数列,前n项和为,是学 科.网首项为2的等比数列,且公比大于0,,,.()求和的通项公式;()求数列的前n项和.42. (2016全国II)17.(本题满分12分)为等差数列的前n项和,且记,其中表示不超过的最大整数,如()求;()求数列的前1 000项和43.(2016全国III)(17)(本小题满分12分)已知数列的前n项和,其中(I)证明是等比数列,并求其通项公式;(II)若 ,求44. (2016北京)20.(本小题13分) 设数列A: , , ().如果对小于()的每个正整数都有 ,则称是数列A的一个“G时刻”.记“是数列A的所有“G时刻”组成的集合.(1)对数列A:-2,2,-1,1,3,写出的所有元素;(2)证明:若数列A中存在使得>,则 ;学.科网来源:学科网(3)证明:若数列A满足- 1(n=2,3, ,N),则的元素个数不小于 -.45. (2016四川)19. 【题设】(本小题满分12分)已知数列 的首项为1, 为数列 的前n项和, ,其中q>0, .(I)若 成等差数列,求an的通项公式;(ii)设双曲线 的离心率为 ,且 ,证明:.46. (2016天津)(18) 已知是各项均为正数的等差数列,公差为,对任意的是和的等比中项.()设,求证:是等差数列;()设 ,求证:47. (2016山东)(18)(本小题满分12分)已知数列 的前n项和Sn=3n2+8n,是等差数列,且 ()求数列的通项公式;()令 求数列的前n项和Tn.48. (2016江苏)20. (本小题满分16分)记.对数列和的子集T,若,定义;若,定义.例如:时,.现设是公比为3的等比数列,且当时,.(1)求数列的通项公式;(2)对任意正整数,若,求证:;(3)设,求证:.49. (2016浙江)20.(本题满分15分)设数列满足,(I)证明:,;(II)若,证明:,50. 【2015江苏高考,20】(本小题满分16分) 设是各项为正数且公差为d的等差数列 (1)证明:依次成等比数列; (2)是否存在,使得依次成等比数列,并说明理由; (3)是否存在及正整数,使得依次成等比数列,并说 明理由.51. 【2015高考浙江,理20】已知数列满足=且=-()(1)证明:1();(2)设数列的前项和为,证明().52. 【2015高考山东,理18】设数列的前n项和为.已知. (I)求的通项公式; (II)若数列满足,求的前n项和.53. 【2015高考安徽,理18】设,是曲线在点处的切线与x轴交点的横坐标. ()求数列的通项公式; ()记,证明.54. 【2015高考天津,理18】(本小题满分13分)已知数列满足,且成等差数列.(I)求的值和的通项公式;(II)设,求数列的前项和.55. 【2015高考重庆,理22】在数列中,(1)若求数列的通项公式; (2)若证明:56. 【2015高考四川,理16】设数列的前项和,且成等差数列. (1)求数列的通项公式; (2)记数列的前n项和,求得成立的n的最小值.57. 【2015高考湖北,理18】设等差数列的公差为d,前项和为,等比数列的公比为已知,()求数列,的通项公式;()当时,记,求数列的前项和 58.【2015高考陕西,理21】(本小题满分12分)设是等比数列,的各项和,其中,(I)证明:函数在内有且仅有一个零点(记为),且;(II)设有一个与上述等比数列的首项、末项、项数分别相同的等差数列,其各项和为,比较与的大小,并加以证明59. 【2015高考新课标1,理17】为数列的前项和.已知0,=.()求的通项公式;()设 ,求数列的前项和.60. 【2015高考广东,理21】数列满足, (1) 求的值; (2) 求数列前项和;(3) 令,证明:数列的前项和满足61. 【2015高考上海,理22】已知数列与满足,.(1)若,且,求数列的通项公式;(2)设的第项是最大项,即(),求证:数列的第项是最大项;(3)设,(),求的取值范围,使得有最大值与最小值,且.62.【2014年湖南卷(理20)】(本小题满分13分) 已知数列满足,. (1)若是递增数列,且,成等差数列,求的值; (2)若,且是递增数列,是递减数列,求数列的通项公式.63.【2014年全国大纲卷(18)】(本小题满分12分)等差数列的前n项和为,已知,为整数,且.(1)求的通项公式;(2)设,求数列的前n项和.64.【2014年山东卷(理19)】(本小题满分12分) 已知等差数列的公差为2,前项和为,且,成等比数列。(I)求数列的通项公式;(II)令=求数列的前项和。65.【2014年全国新课标(理17)】(本小题满分12分)已知数列的前项和为,=1,其中为常数.()证明:;()是否存在,使得为等差数列?并说明理由.高考数列选择题部分1. (2017年新课标理)【解析】设公差为d,则有解得,故选C.2. ( 2017年新课标卷理)【解析】塔的顶层共有灯x盏,则各层的灯数构成一个公比为2的等比数列,由可得,故选B。3. (2017年新课标卷理)【解析】设等差数列的公差为,所以,故选A.4. (2017年浙江卷)5. (2017年新课标)【解析】由题意得,数列如下:则该数列的前项和为要使,有,此时,所以是之后的等比数列的部分和,即,所以,则,此时,对应满足的最小条件为,故选A.6. (2016全国1)【答案】C【解析】试题分析:由已知,所以故选C.考点:等差数列及其运算7. (2016上海)【答案】B8. (2016四川)答案】B9. (2016天津) 【答案】C 【解析】试题分析:由题意得,故是必要不充分条件,故选C. 10. (2016浙江) 【答案】A【解析】表示点到对面直线的距离(设为)乘以长度一半,即,由题目中条件可知的长度为定值,那么我们需要知道的关系式,过作垂直得到初始距离,那么和两个垂足构成了等腰梯形,那么,其中为两条线的夹角,即为定值,那么,作差后:,都为定值,所以为定值故选A 11. 【2015高考重庆,理2】 【答案】B【解析】由等差数列的性质得,选B.12. 【2015高考福建,理8】 【答案】D【解析】由韦达定理得,则,当适当排序后成等比数列时,必为等比中项,故,当适当排序后成等差数列时,必不是等差中项,当是等差中项时,解得,;当是等差中项时,解得,综上所述,所以,选D13. 【2015高考北京,理6】 【答案】C【解析】先分析四个答案支,A举一反例,而,A错误,B举同样反例,而,B错误,下面针对C进行研究,是等差数列,若,则设公差为,则,数列各项均为正,由于,则,选C.14. 【2015高考浙江,理3】 【答案】B.15. 【2014年重庆卷(理02)】 【答案】D【解析】设公比为,因为,所以成等比数列,选择16. 【2014年全国大纲卷(10)】 【答案】C【解析】等比数列an中a4=2,a5=5,a4a5=25=10,数列lgan的前8项和S=lga1+lga2+lga8=lg(a1a2a8)=lg(a4a5)4=4lg(a4a5)=4lg10=4故选:C17. 【2014年福建卷(理03)】 【答案】C【解析】由题意可得S3a1a2a33a212,解得a24,公差da2a1422,a6a15d25212,故选:C18. ( 2017年新课标卷理)【解析】设等差数列的首项为,公差为,所以 ,解得 ,所以,那么 ,那么19. (2017年新课标卷理)【解析】由题意可得: ,解得: ,则20. (2017年北京卷理)【解析】21. (2017年江苏卷)【解析】当时,显然不符合题意;当时,解得,则22. (2016全国I) 【答案】23. (2016上海) 答案】4【解析】试题分析:要满足数列中的条件,涉及最多的项的数列可以为,所以最多由4个不同的数组成.24. (2016北京)【答案】6【解析】试题分析:是等差数列,故填:625. (2016江苏)【答案】【解析】由得,因此26. (2016浙江)【答案】 27. 【2015高考安徽,理14】 答案】【解析】由题意,解得或者,而数列是递增的等比数列,所以,即,所以,因而数列的前项和 .28. 【2015高考新课标2,理16】【答案】【解析】由已知得,两边同时除以,得,故数列是以为首项,为公差的等差数列,则,所以29. 【2015高考广东,理10】【答案】【解析】因为是等差数列,所以,即,所以,故应填入30. 【2015高考陕西,理13】【答案】【解析】设数列的首项为,则,所以,故该数列的首项为,所以答案应填:31. 【2015江苏高考,11】 【答案】32. 【2014年广东卷(理13)】【答案】【解析】由题意得,又,=.33. 【2014年江苏卷(理07)】【答案】4【解析】根据等比数列的定义,所以由得,消去,得到关于的一元二次方程,解得,34. 【2014年天津卷(理11)】【答案】【解析】依题意得,所以,解得.35. 【2014年北京卷(理12)】【答案】8【解析】由等差数列的性质可得a7+a8+a9=3a80,a80,又a7+a10=a8+a90,a90,等差数列an的前8项为正数,从第9项开始为负数,等差数列an的前8项和最大,故答案为:8高考数列简答题36. (2017年北京卷理)【答案】()当时,所以,对于且,都有,只需比较与其他项的大小比较当且1<k<n时, =(1-k)n+2(k-1)= (k-1)(2-n)因为k-1>0,且2-n<0, 所以所以 对于且=1-n所以 又所以是以首项d=-1为公差的等差数列。()(1)设、的公差为, 对于其中任意项(,1<i<n)若则对于给定的正整数n,此时,故数列为等差数列若则对于给定正整数n,此时,数列为等差数列(3)若此时为一个关于n的一次函数,故必存在,当nS,则当nS时,因此当nS时,此时,令,下证:对任意正数M,存在,学%科%网当nm时取取 (x取不大于x的整数)nm时,=A()+BA成立若C0,取当nm时,成立综上,对任意正整数M存在,当nm时命题得证.37. (2017年江苏卷)【解析】(1)因为是等差数列,所以,当时,以上三式相加,得因此,是数列38. (2017山东理)【答案】(I)(II)【解析】解:(I)设数列的公比为q,由已知q>0.由题意得,所以,因为q>0,所以,因此数列的通项公式为-得= 所以39. (2017年天津卷理)【答案】 (1).(2).【解析】(I)设等差数列的公差为,等比数列的公比为.由,有,故,上述两式相减,得 得.所以,数列的前项和为.40. (2016全国II)【答案】(), ;()1893.考点:等差数列的的性质,前项和公式,对数的运算.41. (2016全国III)【答案】();()【解析】考点:1、数列通项与前项和为关系;2、等比数列的定义与通项及前项和为42.(2016北京)【答案】(1)的元素为和;(2)详见解析;(3)详见解析.如果,取,则对任何.从而且.又因为是中的最大元素,所以.考点:数列、对新定义的理解.43.(2016四川)【答案】();()详见解析.试题解析:()由已知, 两式相减得到.又由得到,故对所有都成立.所以,数列是首项为1,公比为q的等比数列.从而.由成等比数列,可得,即,则,由已知,,故 .所以.()由()可知,.所以双曲线的离心率 .由解得.因为,所以.于是,故.考点:数列的通项公式、双曲线的离心率、等比数列的求和公式.44.(2016天津)(18) 【答案】()详见解析()详见解析考点:等差数列、等比中项、分组求和、裂项相消求和45.(2016山东)【答案】();().()由()知,又,得,两式作差,得所以考点:数列前n项和与第n项的关系;等差数列定义与通项公式;错位相减法46.(2016江苏)【答案】(1)(2)详见解析(3)详见解析来源:学科网(3)下面分三种情况证明.若是的子集,则.若是的子集,则.若不是的子集,且不是的子集.考点:等比数列的通项公式、求和47.(2016浙江)【试题分析】(I)先利用三角形不等式得,变形为,再用累加法可得,进而可证;(II)由(I)可得,进而可得,再利用的任意性可证(II)任取,由(I)知,对于任意,故从而对于任意,均有 48. 【2015江苏高考,20】【答案】(1)详见解析(2)不存在(3)不存在【解析】试题分析(1)根据等比数列定义只需验证每一项与前一项的比值都为同一个不为零的常数即可(2)本题列式简单,变形较难,首先令将二元问题转化为一元,再分别求解两个高次方程,利用消最高次的方法得到方程:,无解,所以不存在(3)同(2)先令将二元问题转化为一元,为降次,所以两边取对数,消去n,k得到关于t的一元方程,从而将方程的解转化为研究函数零点情况,这个函数需要利用二次求导才可确定其在上无零点试题解析:(1)证明:因为(,)是同一个常数,所以,依次构成等比数列(2)令,则,分别为,(,)假设存在,使得,依次构成等比数列,则,且令,则,且(,),化简得(),且将代入()式,则显然不是上面方程得解,矛盾,所以假设不成立,因此不存在,使得,依次构成等比数列(3)假设存在,及正整数,使得,依次构成等比数列,则,且分别在两个等式的两边同除以及,并令(,),则,且将上述两个等式两边取对数,得,且化简得,且令,则由,知,在和上均单调故只有唯一零点,即方程()只有唯一解,故假设不成立所以不存在,及正整数,使得,依次构成等比数列49. 【2015高考浙江,理20】【答案】(1)详见解析;(2)详见解析.试题分析:(1)首先根据递推公式可得,再由递推公式变形可知,从而得证;(2)由和得,从而可得,即可得证.试题解析:(1)由题意得,即,由得,由得,即;(2)由题意得,由和得,因此,由得.50. 【2015高考山东,理18】【答案】(I); (II).所以 当 时, 所以两式相减,得 所以经检验, 时也适合,综上可得: 51. 【2015高考安徽,理18】【解析】试题分析:()对题中所给曲线的解析式进行求导,得出曲线在点处的切线斜率为.从而可以写出切线方程为.令.解得切线与轴交点的横坐标. ()要证,需考虑通项,通过适当放缩能够使得每项相消即可证明.思路如下:先表示出,求出初始条件当时,.当时,单独考虑,并放缩得,所以 ,综上可得对任意的,均有.试题解析:()解:,曲线在点处的切线斜率为. 从而切线方程为.令,解得切线与轴交点的横坐标. ()证:由题设和()中的计算结果知 . 当时,. 当时,因为, 所以. 综上可得对任意的,均有.52. 【2015高考天津,理18】【答案】(I) ; (II) . (II) 由(I)得,设数列的前项和为,则,两式相减得,整理得 所以数列的前项和为.53. 【2015高考重庆,理22】【答案】(1);(2)证明见解析.【解析】试题分析:(1)由于,因此把已知等式具体化得,显然由于,则(否则会得出),从而,所以是等比数列,由其通项公式可得结论;(2)本小题是数列与不等式的综合性问题,数列的递推关系是可变形为,由于,因此,于是可得,即有,又,于是有,这里应用了累加求和的思想方法,由这个结论可知,因此,这样结论得证,本题不等式的证明应用了放缩法.(1)由,有若存在某个,使得,则由上述递推公式易得,重复上述过程可得,此与矛盾,所以对任意,.从而,即是一个公比的等比数列.故.求和得另一方面,由上已证的不等式知得综上:54.【2015高考四川,理16】【答案】(1);(2)10.【解析】(1)由已知,有,即.从而.又因为成等差数列,即.所以,解得.所以,数列是首项为2,公比为2的等比数列.故.(2)由(1)得.所以.由,得,即.因为,所以.于是,使成立的n的最小值为10.55.【2015高考湖北,理18】【答案】()或;(). -可得,故. 56.【2015高考陕西,理21】【答案】(I)证明见解析;(II)当时, ,当时,证明见解析【解析】试题分析:(I)先利用零点定理可证在内至少存在一个零点,再利用函数的单调性可证在内有且仅有一个零点,进而利用是的零点可证;(II)先设,再对的取值范围进行讨论来判断与的大小,进而可得和的大小试题解析:(I),则所以在内至少存在一个零点.又,故在内单调递增,所以在内有且仅有一个零点.因为是的零点,所以,即,故.(II)解法一:由题设,所以,即.综上所述,当时, ;当时解法二 由题设,当时, 当时, 用数学归纳法可以证明.当时, 所以成立.假设时,不等式成立,即.那么,当时,.又令,则所以当,在上递减;当,在上递增.所以,从而故.即,不等式也成立.所以,对于一切的整数,都有.解法三:由已知,记等差数列为,等比数列为,则,所以,令当时, ,所以.当时, 而,所以,.若,当,从而在上递减,在上递增.所以,所以当又,故综上所述,当时,;当时.57.【2015高考新课标1,理17】【答案】()()所以=;()由()知,=,所以数列前n项和为= =.58.【2015高考广东,理21】【答案】(1);(2);(3)见解析【解析】(1)依题, ;(2)依题当时, ,又也适合此式, , 数列是首项为,公比为的等比数列,故;(3)依题由知,59. 【2015高考上海,理22】【答案】(1)(2)详见解析(3)【解析】解:(1)由,得,所以是首项为,公差为的等差数列,故的通项公式为,.证明:(2)由,得.所以为常数列,即.因为,所以,即.故的第项是最大项.解:(3)因为,所以,当时, .当时,符合上式.所以.因为,所以,.当时,由指数函数的单调性知,不存在最大、最小值;当时,的最大值为,最小值为,而;当时,由指数函数的单调性知,的最大值,最小值,由及,得.综上,的取值范围是.60. 【2014年湖南卷(理20)】解:(1)因为是递增数列,所以,而,因此 ,又,成等差数列,所以,因而,解得或, 但当时,与是递增数列相矛盾,故. (2) 由于是递增数列,因而 ,于是 且 ,所以 则可知,因此, 因为是递减数列,同理可得,故, 由即得 . 于是 故数列的通项公式为61. 【2014年全国大纲卷(18)】解:(1)设等差数列的公差为,而,从而有若,此时不成立若,数列是一个单调递增数列,随着的增大而增大,也不满足当时,数列是一个单调递减数列,要使,则须满足即,又因为为整数,所以,所以此时(2)由(1)可得所以62.【2014年山东卷(理19)】解:(I)解得(II)63.【2014年全国新课标(理17)】【解析】:()由题设,两式相减,由于,所以 6分()由题设=1,可得,由()知假设为等差数列,则成等差数列,解得;证明时,为等差数列:由知数列奇数项构成的数列是首项为1,公差为4的等差数列令则,数列偶数项构成的数列是首项为3,公差为4的等差数列令则,(),因此,存在存在,使得为等差数列. 12分