3.4.3直线与圆锥曲线交点.doc
直线与圆锥曲线交点一、选择题l与椭圆+y2=1相交于A、B两点,那么|AB|的最大值为( )B. C.D. y=ax2与直线y=kx+b(k0)交于A、B两点,且此两点的横坐标分别为x1,x2,直线与x轴交点的横坐标是x3,那么恒有 ( )A.x3=x1+x2B.x1x2=x1x3+x2x3C.x1+x2+x3=0D.x1x2+x2x3+x3x1=03. 过抛物线的焦点作一条直线与抛物线相交于A、B两点,它们的横坐标之和等于5,那么这样的直线 A有且仅有一条 B有且仅有两条 C有无穷多条 D不存在4. 设椭圆的两个焦点分别为F1、F2,过F2作椭圆长轴的垂线交椭圆于点P,假设F1PF2为等腰直角三角形,那么椭圆的离心率是 A B C D二、填空题M(1,)、N(4,),给出以下曲线方程:4x+2y1=0,x2+y2=3,+y2=1,y2=1,在曲线上存在点P满足|MP|=|NP|的所有曲线方程是_.y2=16x内,通过点(2,1)且在此点被平分的弦所在直线的方程是_.三、解答题7. 双曲线C:2x2y2=2与点P(1,2)(1)求过P(1,2)点的直线l的斜率取值范围,使l与C分别有一个交点,两个交点,没有交点.(2)假设Q(1,1),试判断以Q为中点的弦是否存在.8.如图,某椭圆的焦点是F1(4,0)、F2(4,0),过点F2并垂直于x轴的直线与椭圆的一个交点为B,且|F1B|+|F2B|=10,椭圆上不同的两点A(x1,y1),C(x2,y2)满足条件:|F2A|、|F2B|、|F2C|成等差数列.(1)求该弦椭圆的方程;(2)求弦AC中点的横坐标;(3)设弦AC的垂直平分线的方程为y=kx+m,求m的取值范围.参考答案一、选择题1. C 2. B 3.B 4.D 二、填空题5.解析:点P在线段MN的垂直平分线上,判断MN的垂直平分线于所给曲线是否存在交点.答案:6.解析:设所求直线与y2=16x相交于点A、B,且A(x1,y1),B(x2,y2),代入抛物线方程得y12=16x1,y22=16x2,两式相减得,(y1+y2(y1y2)=16(x1x2).即kAB=8.故所求直线方程为y=8x15.答案:8xy15=0三、解答题7.解:(1)当直线l的斜率不存在时,l的方程为x=1,与曲线Cl的斜率存在时,设直线l的方程为y2=k(x1),代入C的方程,并整理得(2k2)x2+2(k22k)xk2+4k6=0 (*)()当2k2=0,即k=±时,方程(*)有一个根,l与C有一个交点()当2k20,即k±时=2(k22k)24(2k2)(k2+4k6)=16(32k)当=0,即32k=0,k=时,方程(*)有一个实根,l与C有一个交点.当0,即k,又k±,故当k或k或k时,方程(*)有两不等实根,l与C有两个交点.当0,即k时,方程(*)无解,l与C无交点.综上知:当k=±,或k=,或k不存在时,l与C只有一个交点;当k,或k,或k时,l与C有两个交点;当k时,l与C没有交点.(2)假设以Q为中点的弦存在,设为AB,且A(x1,y1),B(x2,y2),那么2x12y12=2,2x22y22=2两式相减得:2(x1x2)(x1+x2)=(y1y2)(y1+y2)又x1+x2=2,y1+y2=22(x1x2)=y1y1即kAB=2但渐近线斜率为±,结合图形知直线AB与C无交点,所以假设不正确,即以Q为中点的弦不存在.8.解:(1)由椭圆定义及条件知,2a=|F1B|+|F2B|=10,得a=5,又c=4,所以b=3.故椭圆方程为=1.(2)由点B(4,yB)在椭圆上,得|F2B|=|yB|=.因为椭圆右准线方程为x=,离心率为,根据椭圆定义,有|F2A|=(x1),|F2C|=(x2),由|F2A|、|F2B|、|F2C|成等差数列,得(x1)+(x2)=2×,由此得出:x1+x2=8.设弦AC的中点为P(x0,y0),那么x0=4.(3)解法一:由A(x1,y1),C(x2,y2)在椭圆上.得得9(x12x22)+25(y12y22)=0,即9×=0(x1x2)将 (k0)代入上式,得9×4+25y0()=0(k0)即k=y0(当k=0时也成立).由点P(4,y0)在弦AC的垂直平分线上,得y0=4k+m,所以m=y04k=y0y0=y0.由点P(4,y0)在线段BB(B与B关于x轴对称)的内部,得y0,所以m.解法二:因为弦AC的中点为P(4,y0),所以直线AC的方程为yy0=(x4)(k0)将代入椭圆方程=1,得(9k2+25)x250(ky0+4)x+25(ky0+4)225×9k2=0所以x1+x2=8,解得k=y0.(当k=0时也成立)(以下同解法一).