欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022年高中物理会考知识点 4.pdf

    • 资源ID:25325020       资源大小:648.50KB        全文页数:34页
    • 资源格式: PDF        下载积分:4.3金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要4.3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022年高中物理会考知识点 4.pdf

    高中物理会考知识点( 力学部分 ) 第一章力一、力1. 概念 : 力是物体对物体的作用,力不能离开物体而存在. 2. 力的作用是相互的,施力物体同时也是受力物体. 3. 力是矢量 . 既有大小,又有方向,其合成与分解遵从力的平行四边形定则. 要完整地表达一个力,除了说明力的大小,还要指明力的方向4. 力的单位 : 在国际单位制中力的单位名称是牛顿,符号N5. 力的作用效果: 使物体发生形变或使物体的运动状态发生变化. 6. 力的三要素 : 力的大小、方向和作用点叫力的三要素. 通常用力的图示将力的三要素表示出来,力的三要素决定力的作用效果. 力可以用一根带箭头的线段来表示:线段的长短表示力的大小,箭头的指向表示力的方向,箭尾表示力的作用点,这种表示力的方法称为力的图示做力的图示时,先选定一个标度,再从力的作用点开始按力的方向画出力的作用线,将力的大小与标度比较确定线段的长度,最后加上箭头7. 力的测量 : 常用测力计来测量,一般用弹簧秤. 8. 力的分类:(1) 按性质命名的力:重力、弹力、摩擦力、电场力、磁场力等. (2) 按效果命名的力:拉力、压力、动力、阻力、向心力、回复力等. 说明 : 性质相同的力,效果可以相同也可以不同;反之,效果相同的力,性质可能相同,也可能不同. 二、重力1. 重力与万有引力:重力与万有引力的关系如图所示,重力是万有引力的一个分力,万有引力的另一个分力提供物体随地球自转的向心力. 2. 产生 : 由于地球对物体的吸引而产生,但重力不是万有引力. 3. 大小 :G=mg.一般不等于万有引力( 两极出外 ) ,通常情况下可近似认为两者相等. 4. 方向 : 竖直向下 . 说明: (1) 不能说成是垂直向下. 竖直向下是相对于水平面而言,垂直向下是相对于接触面而言. (2) 一般不指向地心( 赤道和两极除外). 5. 重心(1) 物体各部分所受重力的合力的作用点叫重心,重心是重力的作用点,重心可能在物体上,也可能在物体外 . (2) 影响重心位置的因素: 质量分布均匀的物体的重心位置,只与物体的形状有关. 质量分布均匀有规则形状的物体, 它的重心在其几何中心上. 如: 均匀直棒的重心在棒的几何中心上. 质量分布不均匀的物体的重心与物体的形状、质量分布有关. (3) 薄板形物体的重心,可用悬挂法确定. 三、弹力1、物体在外力作用下发生的形状改变叫做形变;在外力停止作用后,能够恢复原状的形变叫做弹性形变2. 定义 : 发生形变的物体会对跟它接触的物体产生力的作用,这种力叫弹力. 弹力是由于施力物体形变而引起 . 例如 a 对 b 的弹力是由于A形变而引起 . 3. 产生条件 :(1)直接接触; (2) 发生形变 . 4. 弹力的方向支持面的弹力方向,总是垂直于支持面指向受力物体. 绳对物体的拉力总是沿绳且指向绳收缩的方向。杆对物体的弹力不一定沿杆的方向. 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 34 页5. 弹力的大小 : (1) 与物体形变量有关,形变量越大,弹力越大. 一般情况下弹力的大小需结合运动状态来计算;(2) 弹簧弹力大小的计算. 胡克定律 : 在弹性限度内,弹簧的弹力F 跟弹簧的形变量x成正比,即 : F=kx.k是弹簧的劲度系数,单位:N/m. 劲度系数由弹簧本身的因素( 材料、长度、截面) 确定,与F、x无关 . 说明 : 一根弹簧剪断成两根后,每根的劲度k都比原来的劲度大;两根弹簧串联后总劲度变小;两根弹簧并联后,总劲度变大. 四、摩擦力1. 定义 : 相互接触的物体间发生相对运动或有相对运动趋势时,在接触面处产生的阻碍物体相对运动或相对运动趋势的力. 2. 产生条件 : 两物体直接接触、相互挤压、接触面粗糙、有相对运动或相对运动的趋势. 这四个条件缺一不可 . 两物体间有弹力是这两物体间有摩擦力的必要条件(没有弹力不可能有摩擦力). 3. 滑动摩擦力大小:滑动摩擦力Ff=FN;其中FN是压力, 为动摩擦因数,无单位 . 说明 : 在接触力中,必须先分析弹力,再分析摩擦力. 只有滑动摩擦力才能用公式F=FN,其中的FN表示正压力,不一定等于重力G. 3动摩擦因数动摩擦因数 是两个物体间的滑动摩擦力与这两个物体表面间的压力的比值的数值既跟相互接触的两个物体的材料有关,又跟接触面的情况(如粗糙程度等)有关在相同的压力下,动摩擦因数越大,滑动摩擦力就越大动摩擦因数没有单位4. 静摩擦力大小(1)发生在两个相互接触、相对静止而又有相对运动趋势的物体接触面之间的阻碍相对运动的力叫静摩擦力(2) 必须明确,静摩擦力大小不能用滑动摩擦定律Ff=FN计算,只有当静摩擦力达到最大值时,其最大值一般可认为等于滑动摩擦力,即Fm=FN静摩擦力 : 静摩擦力是一种被动力,与物体的受力和运动情况有关. 求解静摩擦力的方法是用力的平衡条件或牛顿运动定律.即静摩擦力的大小要根据物体的受力情况和运动情况共同确定,其可能的取值范围是 0 FfFm5. 摩擦力方向摩擦力方向和物体间相对运动(或相对运动趋势)的方向相反. 摩擦力的方向和物体的运动方向可能成任意角度.通常情况下摩擦力方向可能和物体运动方向相同(作为动力),可能和物体运动方向相反(作为阻力),可能和物体速度方向垂直(作为匀速圆周运动的向心力).在特殊情况下,可能成任意角度. 6. 作用效果 : 阻碍物体间的相对运动或相对运动趋势,但对物体来说,摩擦力可以是动力,也可以是阻力. 7. 发生范围 : 滑动摩擦力发生在两个相对运动的物体间,但静止的物体也可以受滑动摩擦力;静摩擦力发生在两个相对静止的物体间,但运动的物体也可以受静摩擦力. 8. 规律方法总结(1) 静摩擦力方向的判断假设法 : 即假设接触面光滑,看物体是否会发生相对运动;若发生相对运动,则说明物体原来的静止是有运动趋势的静止. 且假设接触面光滑后物体发生的相对运动方向即为原来相对运动趋势的方向,从而确定静摩擦力的方向. 根据物体所处的运动状态,应用力学规律判断. 如图所示物块A和 B在外力 F作用下一起沿水平面向右以加速度a 做匀加速直线运动时, 若 A的质量为m ,则很容易确定A所受的静摩擦力大小为ma ,方向水平向右 . 在分析静摩擦力方向时,应注意整体法和隔离法相结合. 如图所示,在力F 作用下, A、B两物体皆静止,试分析A所受的静摩擦力. F A B BAS F 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 34 页F1F2 F O F1 F2 F O (2) 摩擦力大小计算分清摩擦力的种类:是静摩擦力还是滑动摩擦力. 滑动摩擦力由Ff=FN公式计算 . 最关键的是对相互挤压力FN的分析,它跟研究物体在垂直于接触面方向的力密切相关,也跟研究物体在该方向上的运动状态有关. 特别是后者, 最容易被人所忽视.注意FN变,则Ff也变的动态关系. 静摩擦力 : 最大静摩擦力是物体将发生相对运动这一临界状态时的摩擦力,它只在这一状态下才表现出来 . 它的数值跟正压力成正比,一般可认为等于滑动摩擦力. 静摩擦力的大小、方向都跟产生相对运动趋势的外力密切相关,但跟接触面相互挤压力无直接关系. 因而静摩擦力具有大小、方向的可变性,即静摩擦力是一种被动力,与物体的受力和运动情况有关. 求解静摩擦力的方法是用力的平衡条件或牛顿运动定律.即静摩擦力的大小要根据物体的受力情况和运动情况共同确定,其可能的取值范围是 0 FfFm五、物体受力分析1. 明确研究对象在进行受力分析时,研究对象可以是某一个物体,也可以是保持相对静止的若干个物体。在解决比较复杂的问题时,灵活地选取研究对象可以使问题简洁地得到解决. 研究对象确定以后,只分析研究对象以外的物体施予研究对象的力(既研究对象所受的外力),而不分析研究对象施予外界的力. 2. 按顺序找力必须是先场力(重力、电场力、磁场力),后接触力;接触力中必须先弹力,后摩擦力(只有在有弹力的接触面之间才可能有摩擦力). 3. 只画性质力,不画效果力画受力图时,只能按力的性质分类画力,不能按作用效果(拉力、压力、向心力等)画力,否则将出现重复 . 4. 需要合成或分解时,必须画出相应的平行四边形(或三角形)在解同一个问题时,分析了合力就不能再分析分力;分析了分力就不能再分析合力,千万不可重复. 六、力的合成与分解 1 、矢量和标量( 1) 矢量在物理学中, 有一些物理量, 要把它的性质完全地表达出来,除了说明其大小, 还要指明其方向 这种既要由大小、又要由方向来确定的物理量叫做矢量如力、速度、电场强度等( 2)标量只有大小没有方向的物理量叫做标量如长度、时间、温度、能、电流等2. 合力、分力、力的合成( 1)某一个力作用在物体上所产生的效果与几个力共同作用在物体上所产生的效果相同,这个力就叫做那几个力的合力,而那几个力就叫做这个力的分力( 2)求几个已知力的合力叫力的合成;求一个已知力的分力叫力的分解力的合成与分解互为逆运算( 3)当两个力没一直线作用在同一物体上时,如果它们的方向相同,则合力的大小等于两分力大小之和,方向与两个分力的方向相同;如果这两个力的方向相反,则合力的大小等于两个分力的大小之差,方向与两分力中数值大的那个分力相同( 4)如果两个分力互成角度地作用在同一物体上,合力的大小与方向由力的平行四边形定则确定3. 力的平行四边形定则求两个互成角度的力的合力,可以用表示这两个力的线段为邻边作平行四边形,它的对角线就表示合力的大小和方向. 说明 : 矢量的合成与分解都遵从平行四边形定则(可简化成三角形定则)力的合成和分解实际上是一种等效替代. 由三角形定则还可以得到一个有用的推论 : 如果n个力首尾相接组成一个封闭多边形,则这n个力的合力为零. 在分析同一个问题时,合矢量和分矢量不能同时使用. 也就是说,在分析问题时,考虑了合矢量就不能再考虑分矢量;考虑了分矢量就不能再考虑合矢量. 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 34 页矢量的合成分解,一定要认真作图. 在用平行四边形定则时,分矢量和合矢量要画成带箭头的实线,平行四边形的另外两个边必须画成虚线. 各个矢量的大小和方向一定要画得合理. 4用作图法进行力的合成和分解( l )用作图法进行力的合成与分解时,先选定一个标度,并用一点代表受力物体,依据平行四边形定则作出已知力和待求力的图示如求两力之合力,就从受力点作此二力的图示,以它们为邻边,画出一个平行四边形,得到一条过受力点的对角钱,则合力的大小由对角线的长度和选定的标度求出,合力的方向用合力与某一分力的夹角表示,可用量角器置出对角线与一条邻边间的角度如求一个力的分力,就从受力点先作这个力的图示,以它为对角线,再根据其他条件作出平行四边形,得到过受力点的邻边,就可以求得分力的大小和方向了( 2)当两个力互相垂直时,对应的力平行四边形为矩形,这时,两个力及其合力对应成直角三角形的边、角关系,可用勾股定理或三角函数知识解直角三角形以求出力5. 根据力的平行四边形定则可得出以下几个结论: 共点的两个力(F1、F2) 的合力 (F) 的大小,与它们的夹角( ) 有关; 越大,合力越小;越小,合力越大 .F1与 F2同向时合力最大;F1与 F2反向时合力最小,合力的取值范围是: F1-F2 FF1+F2合力可能比分力大,也可能比分力小,也可能等于某一分力. 共点的三个力,如果任意两个力的合力最小值小于或等于第三个力,那么这三个共点力的合力可能等于零 . 6. 力的分解(1) 求一个已知力的分力叫力的分解. 力的分解是力的合成的逆运算,也遵从平行四边形定则. 一个已知力可以分解为无数对大小和方向不同的分力,在力的分解过程中,常常要考虑到力实际产生的效果,这样才能使力的分解具有唯一性. 要使分力有唯一解,必须满足:已知两个分力的方向或已知一个分力的大小和方向 . 注意 : 已知一个分力 (F2) 大小和另一个分力(F1) 的方向(F1与 F2的夹角为 ) ,则有三种可能: F2Fsin 时无解F2=Fsin 或 F2F 时有一组解Fsin F2 mg 超重物向上减速:mgTma Tm(ga) mg 失重物向下加速:mgTma Tm(ga) mg 超重注意:解此类问题的关键是取加速度的方向为正)超中失重现象与物体运动方向无关只取决于物体加速度的大小和方向)常见的超重与失重现象:过桥、飞船上升、下降(超重),在轨道上运行(完全失重)等问题精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 9 页,共 34 页第三节牛顿第三定律1牛顿第三定律的内容两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在一条直线上这就是牛顿第三定律2牛顿第三定律的应用,作用力与反作用力总是成对同时出现的,只要有力,这个力一定有反作用力,根据牛顿第三定律,就可以知道它的反作用力的大小和方向;找到这个力的施力者,就可以知道反作用力的受力者作用力与反作用力相同的是大小和性质,而不是作用效果3作用力和反作用力与平衡力的区别一对作用力和反作用力与一对平衡力都有“大小相等、方向相反,作用在一直线”的特点,极易混淆可从以下四个方面将它们加以区别:一对作用力和反作用力一对平衡力作用对象分别作用在两个不同的相互作用的物体上作用在同一物体上力的性质一定是同性质的力可以是不同性质的力力的效果分别对两个物体产生作用,对各物体的作用效果不可抵消,不可求合力对同一物体产生的作用,效果可以互相抵消,合力为零力的变化同时产生,同时消失、 ,同时变化可以独立地发生变化4、一对作用力和反作用力的冲量和功一对作用力和反作用力在同一个过程中(同一段时间或同一段位移)的总冲量一定为零,但作的总功可能为零、可能为正、也可能为负。这是因为作用力和反作用力的作用时间一定是相同的,而位移大小、方向都可能是不同的。第四节力学单位制1、基本单位和导出单位( 1)基本单位:被选定的几个基本物理量的单位叫基本单位( 2)导出单位:利用物理公式所确定的物理量的单位关系推导出来的单位叫做导出单位2、国际单位制中力学的基本单位( 1) 在力学中, 选定长度、 质量和时间的单位作基本单位在国际单位制中, 取米、千克、秒作基本单位 另外,若使用厘米克秒制,则取厘米、克、秒作为基本单位高中物理中,还有电流、温度、物质的量等的单位安、开尔文、摩尔也是基本单位( 2)在力学中,如速度单位(米/ 秒) 、加速度单位(米/ 秒2) 、力的单位(牛)等均为导出单位( 3)在物理计算时,将所有的已知量都用同一种单位制的单位来表示,通过正确应用物理公式,所求量的单位就一定是这个单位制中的相应单位一切物理量的单位,都可以通过公式由基本单位组合而成,我们也可以通过单位与物理量是否相符,来检查所求结论是否有误。第五节牛顿运动定律的适用范围1、 牛顿运动定律的适用范围牛顿运动定律是经典力学的基本规律,在处理宏观物体的低速运动问题时完全适用,当速度接近光速时就不适用了;经典力学的规律一般也不适用于微观粒子。2、 物体质量和速度的关系根据爱因斯坦狭义相对论的观点,物体的质量是随着速度的增大而增大的,在低速运动中,质量的增大十分微小,而当速度接近于光速时,质量将明显增大第四章物体的平衡第一节共点力作用下物体的平衡1物体的平衡状态及平衡条件( 1)共点力 : 几个力作用于物体的同一点,或它们的作用线交于同一点(该点不一定在物体上),这几个力叫共点力 . 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 10 页,共 34 页( 2)平衡状态:物体处于静止或做匀速直线运动的状态叫做平衡状态( 3)平衡条件:物体所受各个力(共点力)的合力为零,即在平衡力作用下,物体就处于平衡状态。2物体平衡条件的应用( 1)二力平衡:物体只受两个共点力作用而处于平衡时,这两个力一定大小相等、方向相反( 2)三力平衡:物体在三个共点力作用下处于平衡时,三力中任意二力的合力与第三个力大小相等、方向相反( 3)多力平衡:物体在几个共点力作用下处于平衡时,其中任意一个力与其余力的合力大小相等、方向相反( 4)三个以上共点力平衡:除如( 2) 、 (3)所述转化为二力平衡问题外,还可运用正交分解合成方法,即应用FX合=0,FY合=0 的平衡条件进行处理3. 平衡条件的推论(1) 物体在多个共点力作用 下处于平衡状态,则其中的一个力与余下的力的合力等大反向. (2) 物体在同一平面内的三个互不平行的力的作用下处于平衡状态时,这三个力必为共点力. (3) 物体在三个共点力作用下处于平衡状态时,这三个力的有向线段必构成封闭三角形,即表示这三个力的矢量首尾相接,恰能组成一个封闭三角形. 可以用 正弦定理法如图所示的三角形中,有:4. 解题途径当物体在两个共点力作用下平衡时,这两个力一定等值反向;当物体在三个共点力作用下平衡时,往往采用平行四边形定则或三角形定则;当物体在四个或四个以上共点力作用下平衡时,往往采用正交分解法 . 第二节有固定转动轴物体的平衡1力臂、力矩( 1)从转轴到力的作用线的距离,叫做力臂( 2) 力和力臂的乘积叫做力矩力对物体的转动作用决定于力矩的大小力矩的单位是牛顿 米, 简称牛米,符号是 Nm 第五章曲线运动第一节曲线运动1、 曲线运动的速度方向( 1)在曲线运动中,运动质点在某一点的瞬时速度方向,就是通过这一点的曲线切线的方向( 2)曲线运动的速度方向时刻改变,无论速度的大小变或不变,运动的速度总是变化的,故曲线运动是一种变速运动2物体做曲线运动的条件(1)当物体所受合力的方向跟它的速度方向不在同一直线上时,这个合力总能产生一个改变速度方向的效果,物体就一定做曲线运动(2)当物体做曲线运动时,它的合力所产生的加速度的方向与速度方向也不在同一直线上(3)物体的运动状态是由其受力条件及初始运动状态共同确定的物体运动的性质由加速度决定(加速度为零时物体静止或做匀速运动;加速度恒定时物体做匀变速运动;加速度变化时物体做变加速运动)。ABsinCACsinBBCsinAB A C 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 11 页,共 34 页物体运动的轨迹(直线还是曲线)则由物体的速度和加速度的方向关系决定(速度与加速度方向在同一条直线上时物体做直线运动;速度和加速度方向成角度时物体做曲线运动)。两个互成角度的直线运动的合运动是直线运动还是曲线运动?决定于它们的合速度和合加速度方向是否共线(如图所示)。常见的类型有: a=0:匀速直线运动或静止。 a 恒定:性质为匀变速运动,分为:v、a 同向,匀加速直线运动; v、a 反向,匀减速直线运动; v、a 成角度,匀变速曲线运动(轨迹在v、a 之间,和速度v 的方向相切,方向逐渐向a 的方向接近,但不可能达到。 ) a 变化:性质为变加速运动。如简谐运动,加速度大小、方向都随时间变化。物体运动形式与其受力条件及初始运动状态的关系初状态运动形式受力条件力与初速度方向在一直线(或初速度为零)力与初速度方向不在一直线恒力匀变速直线运动匀变速曲线运动匀加速直线运动特例:自由落体运动匀减速直线运动特例:竖直上抛运动平抛运动斜抛运动变力加速度改变的直线运动加速度改变的曲线运动简谐运动匀速圆周运动合力为零静止或匀速直线运动二、运动的合成和分解1、合运动和分运动当物体实际发生的运动较复杂时,我们可将其等效为同时参与几个简单的运动,前者实际发生的运动称作合运动,后者则称作物体实际运动的分运动2、运动的合成和分解的概念已知分运动求合运动,叫做运动的合成;已知合运动求分运动,叫做运动的分解,这种双向的等效操作过程,是研究复杂运动的重要万法3运动的合成和分解的应用(1)进行运动的合成与分解,就是对描述运动的各物理量如位移、速度、加速度等矢量用平行四边形定则求和或求差运动的合成与分解遵循如下原理:独立性原理:构成一个合运动的几个分运动是彼此独立、互不相干的,物体的任意一个分运动,都按其自身规律进行,不会因有其他分运动的存在而发生改变等时性原理:合运动是同一物体在同一时间内同时完成几个分运动的结果,对同一物体同时参与的几个运动进行合成才有意义矢量性原理:描述运动状态的位移、速度、加速度等物理量都是矢量,对运动进行合成与分解时应按矢量法则,即平行四边形定则作上述物理量的运算(2)合运动的性质可由分运动的性质决定:两个匀速直线运动的合成仍是匀速直线运动;匀速直线运动与匀变速直线运动的合运动为匀变速运动;两个匀变速直线运动的合运动是匀变速运动(3).过河问题如右图所示,若用v1表示水速, v2表示船速,则:v1v a1 a o v2 a2 v2 v1 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 12 页,共 34 页过河时间仅由v2的垂直于岸的分量v决定,即vdt,与 v1无关,所以当v2岸时,过河所用时间最短,最短时间为2vdt也与 v1无关。过河路程由实际运动轨迹的方向决定,当v1v2时,最短路程为d ;当v1 v2时,最短路程程为dvv21(如右图所示) 。(4).连带运动问题指物拉绳(杆)或绳(杆)拉物问题。由于高中研究的绳都是不可伸长的,杆都是不可伸长和压缩的,即绳或杆的长度不会改变,所以解题原则是:把物体的实际速度分解为垂直于绳(杆)和平行于绳(杆)两个分量,根据沿绳(杆)方向的分速度大小相同求解。第二节平抛物体的运动1平抛运动的定义、特点和轨迹(1)物体具有水平方向的初速度,并且只在重力作用下所发生的运动称为平抛运动(2)平抛运动是一种加速度为g、轨迹为曲线(半支抛物线)的匀变速曲线运动通常将平抛运动视作沿水平方向的匀速直线运动与竖直方向的自由落体运动的合成2物体做平抛运动的条件(1)物体做平抛运动的条件是:只受重力作用;具有水平方向的初速度(2)当物体受恒力作用,且初速度方向与恒力方向垂直时,所发生的运动与平抛物体的运动性质相同,都属于轨迹为抛物线的匀变速曲线运动3平抛运动的规律在以抛出点为原点,水平方向为X 轴、初速度v0、方向为X 轴正方向,竖直方向为y 轴、正方向向下的坐标系中描述平抛运动的规律如下:4平抛运动规律的应用(1)处理平抛运动问题,要把握手抛运动的特点,将其分解成两个直线运动,在水平方向利用匀速直线运动的规律,在竖直方向则利用初速为零的匀加速直线运动的规律例如:匀变速直线运动中间时刻的瞬时速度V中t=tsvvvt20任意两个连续相等时间间隔T 内位移差: s sIs s=saT2初速为零的匀加速直线运动,前1,2, n 个等时间间隔内位移之比s1:s2:s3: snl:4: n2第 1,2, N 个等时间间隔内位移之比x=v0t (1)物体在t 时刻的位置y=21gt2s=2220)21()(gttv,方向与X 轴成 =tan012vgtvx=v0(2)物体在时刻t 的速度vy=gt V=220)(gtv,方向与v0成=tan01vgtv1 v2 v精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 13 页,共 34 页s:s: sN=1:3:( 2n l) (2)当平抛物体的落点在水平面上时,物体在空中运动的时间由自由落体分运动的下落高度h 决定,与初速度 v0大小无关; t=gh2;而物体的水平射程则由高度与初速度两者共同决定:x=ghv20;(3).一个有用的推论平抛物体任意时刻瞬时时速度方向的反向延长线与初速度延长线的交点到抛出点的距离都等于水平位移的一半。证明:设时间t 内物体的水平位移为s,竖直位移为h,则末速度的水平分量vx=v0=s/t,而竖直分量vy=2h/t,shvv2tanxy,所以有2tanshs第三节匀速圆周运动一、匀速圆周运动的定义和性质1质点沿圆周运动,如果在相等的时间里通过的圆弧长度相等,这种运动叫做匀速圆周运动,是一种基本的曲线运动2匀速圆周运动具有如下特点:轨迹是圆;线速度、加速度均大小不变,方向不断改变,故属于加速度改变的变速曲线运动,匀速圆周运动的角速度恒定;匀速圆周运动发生条件是质点受到大小不变、方向始终与速度方向垂直的合外力;匀速圆周运动的运动状态周而复始地出现,匀速圆周运动具有周期性二、匀速圆周运动的描述1线速度。角速度、周期和频率的概念(1) 线 速 度v是 描 述 质 点 沿 圆 周 运 动 快 慢 的 物 理 量 , 是 矢 量 , 其 大 小 为Trtsv2; 其方向沿轨迹切线,国际单位制中单位符号是m/s;(2)角速度 是描述质点绕圆心转动快慢的物理量,是矢量,其大小为Tt2;在国际单位制中单位符号是rads;(3)周期 T 是质点沿圆周运动一周所用时间,在国际单位制中单位符号是s;(4)频率 f 是质点在单位时间内完成一个完整圆运动的次数,在国际单位制中单位符号是Hz;(5)转速 n是质点在单位时间内转过的圈数,单位符号为rs,以及 rmin2、速度、角速度、周期和频率之间的关系线速度、角速度、周期和频率各量从不同角度描述质点运动的快慢,它们之间有关系vr fT1,Tv2,f2。由上可知,在角速度一定时,线速度大小与半径成正比;在线速度一定时,角速度大小与半径成反比凡是直接用皮带传动(包括链条传动、摩擦传动)的两个轮子,两轮边缘上各点的线速度大小相等;凡是同一个轮轴上(各个轮都绕同一根轴同步转动)的各点角速度相等(轴上的点除外)。三、向心力和向心加速度1向心力( 1)向心力是改变物体运动方向,产生向心加速度的原因( 2)向心力的方向指向圆心,总与物体运动方向垂直,所以向心力只改变速度的方向v0 vt vx vy h s s/ 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 14 页,共 34 页( 3)根据牛顿运动定律,向心力与向心加速度的因果关系是rmrvmmaFn22,两者方向恒一致:总是与速度垂直、沿半径指向圆心( 4)对于匀速圆周运动,物体所受合外力全部作为向心力,故做匀速圆周运动的物体所受合外力应是:大小不变、方向始终与速度方向垂直2向心加速度( 1)向心加速度由向心力产生,描述线速度方向变化的快慢,是矢量( 2)向心加速度方向与向心力方向恒一致,总沿半径指向圆心;向心加速度的大小为22224Trrrvan(3)一般地说,当做圆周运动物体所受的合力不指向圆心时,可以将它沿半径方向和切线方向正交分解,其沿半径方向的分力为向心力,只改变速度的方向,不改变速度的大小;其沿切线方向的分力为切向力,只改变速度的大小,不改变速度的方向。分别与它们相应的向心加速度描述速度方向变化的快慢,切向加速度描述速度大小变化的快慢。3向心力公式rvmFrmF22与的比较( 1)由公式 a=2r 与 a=v2/r 可知,在角速度一定的条件下,质点的向心加速度与半径成正比;在线速度一定的条件下,质点的向心加速度与半径成反比( 2)做匀速圆周运动的物体所受合外力全部作为向心力,故物体所受合外力应大小不变、方向始终与速度方向垂直;合外力只改变速度的方向,不改变速度的大小根据公式rvmFrmF22与,倘若物体所受合外力F 大于在某圆轨道运动所需向心力rvmrm22或,物体将速率不变地运动到半径减小的新圆轨道里(在那里,物体的角速度将增大),使物体所受合外力恰等于该轨道上所需向心力,可见物体在此时会做靠近圆心的运动;反之,倘若物体所受合外力小于在某圆轨道运动所需向心力,“向心力不足” ,物体运动的轨道半径将增大,因而逐渐远离圆心如果合外力突然消失,物体将沿切线方向飞出,这就是离心运动4用向心力公式解决实际问题根据公式rvmFrmF22与求解圆周运动的动力学问题时应做到四确定:(1)确定圆心与圆轨迹所在平面;(2)确定向心力来源;(3)以指向圆心方向为正,确定参与构成向心力的各分力的正、负;(4)确定满足牛顿定律的动力学方程做圆周运动物体所受的向心力和向心加速度的关系同样遵从牛顿第二定律:Fn=man在列方程时,根据物体的受力分析,在方程左边写出外界给物体提供的合外力,右边写出物体需要的向心力(可选用RTmRmRmv2222或或等各种形式) 。四、圆周运动的实例1实际运动中向心力来源的分析(1)向心力是根据力的作用效果命名的,物体所受的某个力,或某个力的分力,或几个力的合力,只要能产生只改变物体速度的方向、不改变速度大小的效果,就是向心力,向心力肯定是变力,它的方向总在改变精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 15 页,共 34 页(2)向心力来源于物体实际所受的外力,处理具体问题时,我们首先要明确物体受什么力,这些力有没有沿垂直于速度方向的分力,所有沿与速度方向垂直的分力都具有改变速度方向的作用效果,都将参与构成向心力2变速圆周运动中特殊点的有关问题(1)向心力和向心加速度的公式同样适用于变速圆周运动,求质点在变速圆周运动某瞬时的向心加速度的大小时,公式中的v(或 )必须用该时刻的瞬时值(2)物体在重力和弹力作用下在竖直平面内的变速圆周运动通常只研究两个特殊状态,即在轨道的最高点与最低点在这两个位置时,提供向心力的重力、弹力及向心加速度均在同一竖直线上,向心力是弹力与重力的代数和,在这两个位置时物体的速度、加速度均不同这类问题的特点是:由于机械能守恒, 物体做圆周运动的速率时刻在改变,物体在最高点处的速率最小,在最低点处的速率最大。物体在最低点处向心力向上,而重力向下,所以弹力必然向上且大于重力;而在最高点处,向心力向下,重力也向下,所以弹力的方向就不能确定了,要分三种情况进行讨论。弹力只可能向下,如绳拉球。这种情况下有mgRmvmgF2即gRv,否则不能通过最高点。弹力只可能向上,如车过桥。在这种情况下有:gRvmgRmvFmg,2,否则车将离开桥面,做平抛运动。弹力既可能向上又可能向下,如管内转(或杆连球、环穿珠)。这种情况下,速度大小 v 可以取任意值。 但可以进一步讨论:当gRv时物体受到的弹力必然是向下的;当gRv时物体受到的弹力必然是向上的;当gRv时物体受到的弹力恰好为零。当弹力大小Fmg 时,向心力只有一解:F +mg;当弹力F=mg 时,向心力等于零。3、圆锥摆圆锥摆是运动轨迹在水平面内的一种典型的匀速圆周运动。其特点是由物体所受的重力与弹力的合力充当向心力,向心力的方向水平。也可以说是其中弹力的水平分力提供向心力(弹力的竖直分力和重力互为平衡力) 。绳F G G F 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 16 页,共 34 页第六章万有引力定律第一节万有引力定律一、行星运动1地心说和日心说地心说认为地球是宇宙的中心,是静止不动的,太阳、月亮及其它行星都绕地球运动,日心说认为太阳是静止不动的,地球和其它行星都绕太阳运动,日心说是形成新的世界观的基础,是对宗教的挑战。2开普勒第一定律开普勒第一定律指出:所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上,这个定律也叫做“轨道定律”,它正确描述了行星运动轨道的形状。3开普勒第三定律开普勒第三定律指出:所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等,即R3/T2=k这个定律也叫“周期定律”行星运动三定律是开普勒根据第谷连续20 年对行星运动进行观察记录的数据,经过刻苦计算而得出的结论二、万有引力定律1万有引力定律的内容(l)万有引力是由于物体具有质量而在物体之间产生的一种相互作用它的大小和物体的质量及两个物体之间的距离有关:两个物体质量越大,它们间的万有引力越大;两物体间距离越远,它们间的万有引力越小通常两个物体之间的万有引力极其微小,在天体系统中,万有引力的作用是决定性的(2)万有引力定律的公式是:221rmmGF即两物体间万有引力的大小跟这两个物体的质量的乘积成正比,跟它们的距离的二次方成反比2引力常量及其测定(1)万有引力常量G6672591011 Nm2/kg2,通常取G6671011 N m2/kg2( 2)万有引力常量G 的值是由英国物理学家卡文迪许用扭秤装置首先准确测定的G 的测定不仅用实验证实了万有引力的存在,同时也使万有引力定律有了实用价值3万有引力定律的应用万有引力定律在研究天体运动中起着决定性的作用,它把地面上物体的运动规律与天体运动的规律统一起来,是人类认识宇宙的基础万有引力定律在天文学上的下列应用:(1)用万有引力定律求中心星球的质量和密度当一个星球绕另一个星球做匀速圆周运动时,设中心星球质量为M,半径为R,环绕星球质量为m,线速度为v,公转周期为T,两星球相距r,由万有引力定律有:2222TmrrmvrGMm,可得出23224GTrGrvM,由 r、v 或 r、T 就可以求出中心星球的质量;如果环绕星球离中心星球表面很近,即满足rR,那么由334RM可以求出中心星球的平均密度。( 2)发现未知天体:万有引力定律不仅能够解释已知的天体现象,而且可以根据力与运动的关系,预言天精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 17 页,共 34 页体的轨道从而发现新的天体( 3)万有引力和重力的关系一般的星球都在不停地自转,星球表面的物体随星球自转需要向心力,因 此星球表面上的物体所受的万有引力有两个作用效果:一个是重力,一个是向心力。如图所示,星球表面的物体所受的万有引力的一个分力是重力,另一个分 力是使该物体随星球自转所需的向心力。即nfGF地球表面的物体所受到的向心力f 的大小不超过重力的0.35%,因此在计 算中可以认为万有引力和重力大小相等。即mg=G2)(hRMm。所以重力加速度g= G2)(hRM,可见, g 随 h的增大而减小。如果有些星球的自转角速度非常大,那么万有引力的向心力分力就会很大,重力就相应减小,就不能再认为重力等于万有引力了。如果星球自转速度相当大,使得在它赤道上的物体所受的万有引力恰好等于该物体随星球自转所需要的向心力,那么这个星球就处于自行崩溃的临界状态了。( 4)双星宇宙中往往会有相距较近,质量可以相比的两颗星球,它们离其它星球都较远,因此其它星球对它们的万有引力可以忽略不计。在这种情况下,它们将各自围绕它们连线上的某一固定点做同周期的匀速圆周运动。这种结构叫做双星。由于双星和该固定点总保持三点共线,所以在相同时间内转过的角度必相等,即双星做匀速圆周运动的角速度必相等,因此周期也必然相同。由于每颗星的向心力都是由双星间相互作用的万有引力提供的,因此大小必然相等,由F=mr 2可得mr1,可得LmmmrLmmmr21122121,,即固定点离质量大的星较近。列式时须注意:万有引力定律表达式中的r 表示双星间的距离,按题意应该是L,而向心力表达式中的r表示它们各自做圆周运动的半径,在本题中为r1、r2,千万不可混淆。当我们只研究地球和太阳系统或地球和月亮系统时(其他星体对它们的万有引力相比而言都可以忽略不计) ,其实也是一个双星系统,只是中心星球的质量远大于环绕星球的质量,因此固定点几乎就在中心星球的球心。可以认为它是固定不动的。第二节人造卫星、宇宙速度一、人造卫星(1)使地球上的物体所受的万有引力全部作为向心力时,这个物体就可以以地心为圆心(或一个焦点)沿圆周(或椭圆)运动,成为一颗人造地球卫星当卫星沿着到地心距离为r 的圆形轨道运行时由marMmG2可得卫星运动的加速度a; 由rvmrMmG22可得卫星运动的线速度;由rTmrMmG22)2(可得卫星运动的角速度。不同圆轨道上卫星的向心加速度、速度、周期及角速度随轨道半径变化的规律如下表所列:人造地球卫星运动规律一览表地球半径R0轨道半径R 与轨道半径的关系加速度2000RGMga2RGMgaRa1线速度0000RGMgRvRGMRgvRV1F G m N m1 m2 r1 r2 O精选学习资料 - - - - - - - -

    注意事项

    本文(2022年高中物理会考知识点 4.pdf)为本站会员(Q****o)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开