2022年小学数学图形计算公式+抽屉原理.docx
-
资源ID:25414123
资源大小:17.59KB
全文页数:5页
- 资源格式: DOCX
下载积分:10金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年小学数学图形计算公式+抽屉原理.docx
2022年小学数学图形计算公式+抽屉原理 小升初是孩子最重要的起步方向,我们须要关注怎样的信息才能对孩子的将来有帮助呢?学习啦网我告知大家! 小学奥数抽屉原理问题分析 1、在抽屉问题中,始终认为,最少应当是指运气最好的状况下,至少应当是指运气最差的状况。这种相识对吗? 2、详细到一道题:某次数学、英语测试,全部参与测试者的得分都是自然数,最高得分198,最低得分169,没有得193分、185分和177分 者,并且至少有6人得同一分数,参与测试的至少人?这道题的答案应当是27×5+1=136呢?还是27+5=32呢? 3、同样是上面这道题,把至少改为最少? 4、同样是上面这道题,把最终两句倒一下,改为参与测试的至少人,才能保证至少有6人得同一分数,答案应当可以确定为136了吧? 解析: 至少和最少的意思是一样的,并没有本质的区分。在抽屉原理中,至少和最少通常要和保证联系在一起看。 例如: 箱子中有黑白两种棋子,最少要拿多少颗棋子才能有2颗一样的颜色? 箱子中有黑白两种棋子,至少要拿多少颗棋子才能有2颗一样的颜色? 两题的答案都是2(因为没有保证,所以只须要考虑最好的状况就行了) 再例如: 箱子中有黑白两种棋子,最少要拿多少颗棋子才能保证有2颗一样的颜色? 箱子中有黑白两种棋子,至少要拿多少颗棋子才能保证有2颗一样的颜色? 两题的答案都是3(应用抽屉原理) 至于上面的题目,并且至少有6人得同一分数有歧义,至少有2种说明,没有方法做。 小学数学图形计算公式 1、正方形 (C:周长 S:面积 a:边长) 周长=边长×4 C=4a 面积=边长×边长 S=a×a 2、正方体 (V:体积 a:棱长 ) 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a 3、长方形( C:周长 S:面积 a:边长 ) 周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab 4、长方体 (V:体积 s:面积 a:长 b: 宽 h:高) (1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高 V=abh 5、三角形 (s:面积 a:底 h:高) 面积=底×高÷2 s=ah÷2 三角形高=面积 ×2÷底 三角形底=面积 ×2÷高 6、平行四边形 (s:面积 a:底 h:高) 面积=底×高 s=ah 7、梯形 (s:面积 a:上底 b:下底 h:高) 面积=(上底+下底)×高÷2 s=(a+b)× h÷2 8、圆形 (S:面积 C:周长 d=直径 r=半径) (1)周长=直径×=2××半径 C=d=2r (2)面积=半径×半径× 9、圆柱体 (v:体积 h:高 s:底面积 r:底面半径 c:底面周长) (1)侧面积=底面周长×高=ch(2r或d) (2)表面积=侧面积+底面积×2 (3)体积=底面积×高 (4)体积=侧面积÷2×半径 10、圆锥体 (v:体积 h:高 s:底面积 r:底面半径) 体积=底面积×高÷3 11、总数÷总份数=平均数 12、和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数 13、和倍问题 和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数) 14、差倍问题 差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数) 15、相遇问题 相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间 16、浓度问题 溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量×100%=浓度 溶液的重量×浓度=溶质的重量 溶质的重量÷浓度=溶液的重量 17、利润与折扣问题 利润=售出价-成本 利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比 利息=本金×利率×时间 税后利息=本金×利率×时间×(1-20%) 第5页 共5页第 5 页 共 5 页第 5 页 共 5 页第 5 页 共 5 页第 5 页 共 5 页第 5 页 共 5 页第 5 页 共 5 页第 5 页 共 5 页第 5 页 共 5 页第 5 页 共 5 页第 5 页 共 5 页