欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022年高一数学必修一公式大全.docx

    • 资源ID:25420028       资源大小:26.74KB        全文页数:22页
    • 资源格式: DOCX        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022年高一数学必修一公式大全.docx

    2022年高一数学必修一公式大全 一名中学生,要有最科学的学习方法,才能事半功倍。比如,在数学学习当中,高一同学要能够学会检查和分析,要驾驭自己学习的进度,还要情愿动脑记忆,高一的数学也是如此,我在这里整理了相关资料,希望能帮助到您。 一、集合有关概念 1. 集合的含义 2. 集合的中元素的三个特性: (1) 元素的确定性, (2) 元素的互异性, (3) 元素的无序性, 3.集合的表示: 如:我校的篮球队员,太平洋,大西洋,印度洋,北冰洋 (1) 用拉丁字母表示集合:A=我校的篮球队员,B=1,2,3,4,5 (2) 集合的表示方法:列举法与描述法。 ? 留意:常用数集及其记法:非负整数集(即自然数集)记作:N 正整数集 N*或N+ 整数集Z 有理数集Q 实数集R 1)列举法:a,b,c 2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。x?R|x-32 ,x| x-32 3)语言描述法:例:不是直角三角形的三角形 4) Venn图: 4、集合的分类: (1) 有限集 含有有限个元素的集合 (2) 无限集 含有无限个元素的集合 (3) 空集 不含任何元素的集合 例:x|x2=-5 二、集合间的基本关系 1.“包含”关系子集留意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A 2.“相等”关系:A=B (5≥5,且5≤5,则5=5) 实例:设 A=x|x2-1=0 B=-1,1 “元素相同则两集合相等” 即:任何一个集合是它本身的子集。A?A 真子集:假如A?B,且A? B那就说集合A是集合B的真子集,记作A B(或B A) 假如 A?B, B?C ,那么 A?C 假如A?B 同时 B?A 那么A=B 3. 不含任何元素的集合叫做空集,记为Φ 规定: 空集是任何集合的子集,空集是任何非空集合的真子集。 ? 有n个元素的集合,含有2n个子集,2n-1个真子集三、集合的运算运算类型交 集并 集补 集定 义由全部属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作A交B’),即A B=x|x A,且x B.由全部属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作A并B’),即A B =x|x A,或x B).设S是一个集合,A是S的一个子集,由S中全部不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作,即 CSA= 韦恩图示 性质 A A=A A Φ=Φ A B=B A A B A A B B A A=A A Φ=A A B=B A A B A A B B (CuA) (CuB) = Cu (A B) (CuA) (CuB) = Cu(A B) A (CuA)=U A (CuA)= Φ. 例题: 1.下列四组对象,能构成集合的是 ( ) A某班全部高个子的学生 B闻名的艺术家 C一切很大的书 D 倒数等于它自身的实数 2.集合a,b,c 的真子集共有 个 3.若集合M=y|y=x2-2x+1,x R,N=x|x≥0,则M与N的关系是 . 4.设集合A= ,B= ,若A B,则的取值范围是 5.50名学生做的物理、化学两种试验,已知物理试验做得正确得有40人,化学试验做得正确得有31人,两种试验都做错得有4人,则这两种试验都做对的有 人。 6. 用描述法表示图中阴影部分的点(含边界上的点)组成的集合M= . 7.已知集合A=x| x2+2x-8=0, B=x| x2-5x+6=0, C=x|x2-mx+m2-19=0, 若B∩C≠Φ,A∩C=Φ,求m的值 二、函数的有关概念 1.函数的概念:设A、B是非空的数集,假如根据某个确定的对应关系f,使对于集合A中的随意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合f(x)| x∈A 叫做函数的值域.留意: 1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。求函数的定义域时列不等式组的主要依据是: (1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必需大于零; (4)指数、对数式的底必需大于零且不等于1. (5)假如函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合. (6)指数为零底不行以等于零, (7)实际问题中的函数的定义域还要保证明际问题有意义. ? 相同函数的推断方法:表达式相同(与表示自变量和函数值的字母无关);定义域一样 (两点必需同时具备) (见课本21页相关例2) 2.值域 : 先考虑其定义域 (1)视察法 (2)配方法 (3)代换法 3. 函数图象学问归纳 (1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满意函数关系y=f(x),反过来,以满意y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 . (2) 画法 A、描点法: B、图象变换法常用变换方法有三种 1) 平移变换 2) 伸缩变换 3) 对称变换 4.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间(3)区间的数轴表示. 5.映射一般地,设A、B是两个非空的集合,假如按某一个确定的对应法则f,使对于集合A中的随意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A B为从集合A到集合B的一个映射。记作f:A→B 6.分段函数 (1)在定义域的不同部分上有不同的解析表达式的函数。 (2)各部分的自变量的取值状况. (3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.补充:复合函数假如y=f(u)(u∈M),u=g(x)(x∈A),则 y=fg(x)=F(x)(x∈A) 称为f、g的复合函数。 二.函数的性质 1.函数的单调性(局部性质) (1)增函数设函数y=f(x)的定义域为I,假如对于定义域I内的某个区间D内的随意两个自变量x1,x2,当x1 假如对于区间D上的随意两个自变量的值x1,x2,当x1f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间. 留意:函数的单调性是函数的局部性质;(2)图象的特点假如函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的. (3).函数单调区间与单调性的判定方法 (A) 定义法: 1 任取x1,x2∈D,且x1 2 作差f(x1)-f(x2); 3 变形(通常是因式分解和配方); 4 定号(即推断差f(x1)-f(x2)的正负); 5 下结论(指出函数f(x)在给定的区间D上的单调性). (B)图象法(从图象上看升降) (C)复合函数的单调性复合函数fg(x)的单调性与构成它的函数u=g(x),y=f(u)的单调性亲密相关,其规律:“同增异减” 留意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集. 8.函数的奇偶性(整体性质)(1)偶函数一般地,对于函数f(x)的定义域内的随意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.(2).奇函数一般地,对于函数f(x)的定义域内的随意一个x,都有f(-x)=f(x),那么f(x)就叫做奇函数.(3)具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称.利用定义推断函数奇偶性的步骤: 1首先确定函数的定义域,并推断其是否关于原点对称; 2确定f(-x)与f(x)的关系; 3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数. (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 . 9、函数的解析表达式(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域. (2)求函数的解析式的主要方法有: 1) 凑配法 2) 待定系数法 3) 换元法 4) 消参法 10.函数最大(小)值(定义见课本p36页) 1 利用二次函数的性质(配方法)求函数的最大(小)值 2 利用图象求函数的最大(小)值 3 利用函数单调性的推断函数的最大(小)值:假如函数y=f(x)在区间a,b上单调递增,在区间b,c上单调递减则函数y=f(x)在x=b处有最大值f(b);假如函数y=f(x)在区间a,b上单调递减,在区间b,c上单调递增则函数y=f(x)在x=b处有最小值f(b);例题: 1.求下列函数的定义域: 2.设函数的定义域为,则函数的定义域为_ _ 3.若函数的定义域为,则函数的定义域是 4.函数 ,若,则= 6.已知函数,求函数,的解析式 7.已知函数满意,则= 。 8.设是R上的奇函数,且当时, ,则当时 = 在R上的解析式为 9.求下列函数的单调区间: (2) 10.推断函数的单调性并证明你的结论. 11.设函数推断它的奇偶性并且求证:. 三角函数公式 两角和公式 sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) 倍角公式 tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a 半角公式 sin(A/2)=√(1-cosA)/2) sin(A/2)=-√(1-cosA)/2)cos(A/2)=√(1+cosA)/2) cos(A/2)=-√(1+cosA)/2) tan(A/2)=√(1-cosA)/(1+cosA)tan(A/2)=-√(1-cosA)/(1+cosA) ctg(A/2)=√(1+cosA)/(1-cosA)ctg(A/2)=-√(1+cosA)/(1-cosA) 积化和差 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) 和差化积 sinA+sinB=2sin(A+B)/2)cos(A-B)/2 cosA+cosB=2cos(A+B)/2)sin(A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgB=sin(A+B)/sinAsinB -ctgA+ctgB=sin(A+B)/sinAsin 集合与函数概念一,集合有关概念 1,集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素. 2,集合的中元素的三个特性: 1.元素的确定性; 2.元素的互异性; 3.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素. (2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素. (3)集合中的元素是同等的,没有先后依次,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列依次是否一样. (4)集合元素的三个特性使集合本身具有了确定性和整体性. 3,集合的表示: 如我校的篮球队员,太平洋,大西洋,印度洋,北冰洋 1. 用拉丁字母表示集合:a=我校的篮球队员,b=1,2,3,4,5 2.集合的表示方法:列举法与描述法. 留意啊:常用数集及其记法: 非负整数集(即自然数集) 记作:n 正整数集 n*或 n+ 整数集z 有理数集q 实数集r 关于属于的概念集合的元素通常用小写的拉丁字母表示,如:a是集合a的元素,就说a属于集合a 记作a∈a ,相反,a不属于集合a 记作 a(a 列举法:把集合中的元素一一列举出来,然后用一个大括号括上. 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法.用确定的条件表示某些对象是否属于这个集合的方法. 语言描述法:例:不是直角三角形的三角形 数学式子描述法:例:不等式x-32的解集是x(r| x-32或x| x-32 4,集合的分类: 1.有限集含有有限个元素的集合 2.无限集含有无限个元素的集合 3.空集不含任何元素的集合例:x|x2=-5 二,集合间的基本关系 1.包含关系子集留意:有两种可能(1)a是b的一部分,;(2)a与b是同一集合. 反之: 集合a不包含于集合b,或集合b不包含集合a,记作ab或ba 2.相等关系(5≥5,且5≤5,则5=5) 实例:设a=x|x2-1=0 b=-1,1 元素相同 结论:对于两个集合a与b,假如集合a的任何一个元素都是集合b的元素,同时,集合b的任何一个元素都是集合a的元素,我们就说集合a等于集合b,即:a=b 任何一个集合是它本身的子集.a(a 真子集:假如a(b,且a( b那就说集合a是集合b的真子集,记作ab(或ba) 假如 a(b, b(c ,那么 a(c 假如a(b 同时 b(a 那么a=b 3. 不含任何元素的集合叫做空集,记为φ 规定: 空集是任何集合的子集, 空集是任何非空集合的真子集. 三,集合的运算 1.交集的定义:一般地,由全部属于a且属于b的元素所组成的集合,叫做a,b的交集. 记作a∩b(读作a交b),即a∩b=x|x∈a,且x∈b. 2,并集的定义:一般地,由全部属于集合a或属于集合b的元素所组成的集合,叫做a,b的并集.记作:a∪b(读作a并b),即a∪b=x|x∈a,或x∈b. 3,交集与并集的性质:a∩a = a, a∩φ= φ, a∩b = b∩a,a∪a = a,a∪φ= a ,a∪b = b∪a. 4,全集与补集 (1)补集:设s是一个集合,a是s的一个子集(即),由s中全部不属于a的元素组成的集合,叫做s中子集a的补集(或余集) 记作: csa 即 csa =x (x(s且 x(a (2)全集:假如集合s含有我们所要探讨的各个集合的全部元素,这个集合就可以看作一个全集.通常用u来表示. (3)性质:cu(c ua)=a (c ua)∩a=φ (cua)∪a=u 数学必修1 1. 集合(1)集合的含义与表示通过实例,了解集合的含义,体会元素与集合的“属于”关系。能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的详细问题,感受集合语言的意义和作用。(2)集合间的基本关系理解集合之间包含与相等的含义,能识别给定集合的子集。在详细情境中,了解全集与空集的含义。(3)集合的基本运算理解两个集合的并集与交集的含义,会求两个简洁集合的并集与交集。理解在给定集合中一个子集的补集的含义,会求给定子集的补集。能运用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。 2. 函数概念与基本初等函数I (约32课时)(1)函数进一步体会函数是描述变量之间的依靠关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简洁函数的定义域和值域;了解映射的概念。在实际情境中,会依据不同的须要选择恰当的方法(如图象法、列表法、解析法)表示函数。了解简洁的分段函数,并能简洁应用。通过已学过的函数特殊是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合详细函数,了解奇偶性的含义。学会运用函数图象理解和探讨函数的性质(参见例1)。(2)指数函数(细胞的分裂,考古中所用的C的衰减,药物在人体内残留量的改变等),了解指数函数模型的实际背景。理解有理指数幂的含义,通过详细实例了解实数指数幂的意义,驾驭幂的运算。理解指数函数的概念和意义,能借助计算器或计算机画出详细指数函数的图象,探究并理解指数函数的单调性与特别点。在解决简洁实际问题的过程中,体会指数函数是一类重要的函数模型(参见例2)。(3)对数函数理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的产生历史以及对简化运算的作用。通过详细实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出详细对数函数的图象,探究并了解对数函数的单调性与特别点。知道指数函数与对数函数互为反函数(a0,a≠1)。(4)幂函数通过实例,了解幂函数的概念;结合函数的图象,了解它们的改变状况。(5)函数与方程结合二次函数的图象,推断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系。依据详细函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。(6)函数模型及其应用利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。收集一些社会生活中普遍运用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。三角函数公式 两角和公式 sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) 倍角公式 tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a 半角公式 sin(A/2)=√(1-cosA)/2) sin(A/2)=-√(1-cosA)/2)cos(A/2)=√(1+cosA)/2) cos(A/2)=-√(1+cosA)/2) tan(A/2)=√(1-cosA)/(1+cosA)tan(A/2)=-√(1-cosA)/(1+cosA) ctg(A/2)=√(1+cosA)/(1-cosA)ctg(A/2)=-√(1+cosA)/(1-cosA) 积化和差 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) 和差化积 sinA+sinB=2sin(A+B)/2)cos(A-B)/2 cosA+cosB=2cos(A+B)/2)sin(A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgB=sin(A+B)/sinAsinB -ctgA+ctgB=sin(A+B)/sinAsin 集合与函数概念一,集合有关概念 1,集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素. 2,集合的中元素的三个特性: 1.元素的确定性; 2.元素的互异性; 3.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素. (2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素. (3)集合中的元素是同等的,没有先后依次,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列依次是否一样. (4)集合元素的三个特性使集合本身具有了确定性和整体性. 3,集合的表示: 如我校的篮球队员,太平洋,大西洋,印度洋,北冰洋 1. 用拉丁字母表示集合:a=我校的篮球队员,b=1,2,3,4,5 2.集合的表示方法:列举法与描述法. 留意啊:常用数集及其记法: 非负整数集(即自然数集) 记作:n 正整数集 n*或 n+ 整数集z 有理数集q 实数集r 关于属于的概念集合的元素通常用小写的拉丁字母表示,如:a是集合a的元素,就说a属于集合a 记作a∈a ,相反,a不属于集合a 记作 a(a 列举法:把集合中的元素一一列举出来,然后用一个大括号括上. 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法.用确定的条件表示某些对象是否属于这个集合的方法. 语言描述法:例:不是直角三角形的三角形 数学式子描述法:例:不等式x-32的解集是x(r| x-32或x| x-32 4,集合的分类: 1.有限集含有有限个元素的集合 2.无限集含有无限个元素的集合 3.空集不含任何元素的集合例:x|x2=-5 二,集合间的基本关系 1.包含关系子集留意:有两种可能(1)a是b的一部分,;(2)a与b是同一集合. 反之: 集合a不包含于集合b,或集合b不包含集合a,记作ab或ba 2.相等关系(5≥5,且5≤5,则5=5) 实例:设a=x|x2-1=0 b=-1,1 元素相同 结论:对于两个集合a与b,假如集合a的任何一个元素都是集合b的元素,同时,集合b的任何一个元素都是集合a的元素,我们就说集合a等于集合b,即:a=b 任何一个集合是它本身的子集.a(a 真子集:假如a(b,且a( b那就说集合a是集合b的真子集,记作ab(或ba) 假如 a(b, b(c ,那么 a(c 假如a(b 同时 b(a 那么a=b 3. 不含任何元素的集合叫做空集,记为φ 规定: 空集是任何集合的子集, 空集是任何非空集合的真子集. 三,集合的运算 1.交集的定义:一般地,由全部属于a且属于b的元素所组成的集合,叫做a,b的交集. 记作a∩b(读作a交b),即a∩b=x|x∈a,且x∈b. 2,并集的定义:一般地,由全部属于集合a或属于集合b的元素所组成的集合,叫做a,b的并集.记作:a∪b(读作a并b),即a∪b=x|x∈a,或x∈b. 3,交集与并集的性质:a∩a = a, a∩φ= φ, a∩b = b∩a,a∪a = a,a∪φ= a,a∪b = b∪a. 4,全集与补集 (1)补集:设s是一个集合,a是s的一个子集(即),由s中全部不属于a的元素组成的集合,叫做s中子集a的补集(或余集) 记作: csa 即 csa =x (x(s且 x(a (2)全集:假如集合s含有我们所要探讨的各个集合的全部元素,这个集合就可以看作一个全集.通常用u来表示. (3)性质:cu(c ua)=a (c ua)∩a=φ (cua)∪a=u 高一数学必修一公式大全第22页 共22页第 22 页 共 22 页第 22 页 共 22 页第 22 页 共 22 页第 22 页 共 22 页第 22 页 共 22 页第 22 页 共 22 页第 22 页 共 22 页第 22 页 共 22 页第 22 页 共 22 页第 22 页 共 22 页

    注意事项

    本文(2022年高一数学必修一公式大全.docx)为本站会员(h****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开