2022年高三数学78个数学易错易混知识点与必考大题.docx
-
资源ID:25426131
资源大小:21.97KB
全文页数:11页
- 资源格式: DOCX
下载积分:10金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年高三数学78个数学易错易混知识点与必考大题.docx
2022年高三数学78个数学易错易混知识点与必考大题 每年高考数学考察的内容几乎一样,只不过提示不断地改变,考生只要多进行练习,驾驭其中的规律,就能提高不少分数,接下来我为大家整理了高三数学学习内容,一起来看看吧! 2022高三数学78个数学易错易混学问点 一、集合与函数 1.进行集合的交、并、补运算时,不要忘了全集和空集的特别状况,不要遗忘了借助数轴和文氏图进行求解。 2.在应用条件时,易忽视是空集的状况 3.你会用补集的思想解决有关问题吗? 4.简洁命题与复合命题有什么区分?四种命题之间的相互关系是什么?如何推断充分与必要条件? 5.你知道“否命题”与“命题的否定形式”的区分。 6.求解与函数有关的问题易忽视定义域优先的原则。 7.推断函数奇偶性时,易忽视检验函数定义域是否关于原点对称。 8.求一个函数的解析式和一个函数的反函数时,易忽视标注该函数的定义域。 9.原函数在区间-a,a上单调递增,则肯定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不肯定单调。 10.你娴熟地驾驭了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法 11.求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示。 12.求函数的值域必需先求函数的定义域。 13.如何应用函数的单调性与奇偶性解题?比较函数值的大小;解抽象函数不等式;求参数的范围(恒成立问题)。这几种基本应用你驾驭了吗? 14.解对数函数问题时,你留意到真数与底数的限制条件了吗? (真数大于零,底数大于零且不等于1)字母底数还需探讨 15.三个二次(哪三个二次?)的关系及应用驾驭了吗?如何利用二次函数求最值? 16.用换元法解题时易忽视换元前后的等价性,易忽视参数的范围。 17.“实系数一元二次方程有实数解”转化时,你是否留意到:当时,“方程有解”不能转化为。若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形? 二、不等式 18.利用均值不等式求最值时,你是否留意到:“一正;二定;三等”。 19.肯定值不等式的解法及其几何意义是什么? 20.解分式不等式应留意什么问题?用“根轴法”解整式(分式)不等式的留意事项是什么? 21.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类探讨是关键”,留意解完之后要写上:“综上,原不等式的解集是”。 22.在求不等式的解集、定义域及值域时,其结果肯定要用集合或区间表示;不能用不等式表示。 23.两个不等式相乘时,必需留意同向同正时才能相乘,即同向同正可乘;同时要留意“同号可倒”即ab0,a。 三、数列 24.解决一些等比数列的前项和问题,你留意到要对公比及两种状况进行探讨了吗? 25.在“已知,求”的问题中,你在利用公式时留意到了吗?须要验证,有些题目通项是分段函数。 26.你知道存在的条件吗?(你理解数列、有穷数列、无穷数列的概念吗?你知道无穷数列的前项和与全部项的和的不同吗?什么样的无穷等比数列的全部项的和必定存在? 27.数列单调性问题能否等同于对应函数的单调性问题?(数列是特别函数,但其定义域中的值不是连续的。) 28.应用数学归纳法一要留意步骤齐全,二要留意从到过程中,先假设时成立,再结合一些数学方法用来证明时也成立。 四、三角函数 29.正角、负角、零角、象限角的概念你清晰吗?,若角的终边在坐标轴上,那它归哪个象限呢?你知道锐角与第一象限的角;终边相同的角和相等的角的区分吗? 30.三角函数的定义及单位圆内的三角函数线(正弦线、余弦线、正切线)的定义你知道吗? 31.在解三角问题时,你留意到正切函数、余切函数的定义域了吗?你留意到正弦函数、余弦函数的有界性了吗? 32.你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特别角。异角化同角,异名化同名,高次化低次) 33.反正弦、反余弦、反正切函数的取值范围分别是 34.你还记得某些特别角的三角函数值吗? 35.驾驭正弦函数、余弦函数及正切函数的图象和性质。你会写三角函数的单调区间吗?会写简洁的三角不等式的解集吗?(要留意数形结合与书写规范,可别忘了),你是否清晰函数的图象可以由函数经过怎样的变换得到吗? 36.函数的图象的平移,方程的平移以及点的平移公式易混: (1)函数的图象的平移为“左+右-,上+下-”;如函数的图象左移2个单位且下移3个单位得到的图象的解析式为,即。 (2)方程表示的图形的平移为“左+右-,上-下+”;如直线左移2个个单位且下移3个单位得到的图象的解析式为,即。 (3)点的平移公式:点按向量平移到点,则。 37.在三角函数中求一个角时,留意考虑两方面了吗?(先求出某一个三角函数值,再判定角的范围) 38.形如的周期都是,但的周期为。 39.正弦定理时易忘比值还等于2R. 五、平面对量 40.数0有区分,的模为数0,它不是没有方向,而是方向不定。可以看成与随意向量平行,但与随意向量都不垂直。 41.数量积与两个实数乘积的区分: 在实数中:若,且ab=0,则b=0,但在向量的数量积中,若,且,不能推出。 已知实数,且,则a=c,但在向量的数量积中没有。 在实数中有,但是在向量的数量积中,这是因为左边是与共线的向量,而右边是与共线的向量。 42.是向量与平行的充分而不必要条件,是向量和向量夹角为钝角的必要而不充分条件。 六、解析几何 43.在用点斜式、斜截式求直线的方程时,你是否留意到不存在的状况? 44.用到角公式时,易将直线l1、l2的斜率k1、k2的依次弄颠倒。 45.直线的倾斜角、到的角、与的夹角的取值范围依次是。 46.定比分点的坐标公式是什么?(起点,中点,分点以及值可要搞清),在利用定比分点解题时,你留意到了吗? 47.对不重合的两条直线 (建议在解题时,探讨后利用斜率和截距) 48.直线在两坐标轴上的截距相等,直线方程可以理解为,但不要遗忘当时,直线在两坐标轴上的截距都是0,亦为截距相等。 49.解决线性规划问题的基本步骤是什么?请你留意解题格式和完整的文字表达。(设出变量,写出目标函数写出线性约束条件画出可行域作出目标函数对应的系列平行线,找到并求出最优解应用题肯定要有答。) 50.三种圆锥曲线的定义、图形、标准方程、几何性质,椭圆与双曲线中的两个特征三角形你驾驭了吗? 51.圆、和椭圆的参数方程是怎样的?常用参数方程的方法解决哪一些问题? 52.利用圆锥曲线其次定义解题时,你是否留意到定义中的定比前后项的依次?如何利用其次定义推出圆锥曲线的焦半径公式?如何应用焦半径公式? 53.通径是抛物线的全部焦点弦中最短的弦。(想一想在双曲线中的结论?) 54.在用圆锥曲线与直线联立求解时,消元后得到的方程中要留意:二次项的系数是否为零?椭圆,双曲线二次项系数为零时直线与其只有一个交点,判别式的限制。(求交点,弦长,中点,斜率,对称,存在性问题都在下进行)。 55.解析几何问题的求解中,平面几何学问利用了吗?题目中是否已经有坐标系了,是否须要建立直角坐标系? 七、立体几何 56.你驾驭了空间图形在平面上的直观画法吗?(斜二测画法)。 57.线面平行和面面平行的定义、判定和性质定理你驾驭了吗?线线平行、线面平行、面面平行这三者之间的联系和转化在解决立几问题中的应用是怎样的?每种平行之间转换的条件是什么? 58.三垂线定理及其逆定理你记住了吗?你知道三垂线定理的关键是什么吗?(一面、四线、三垂直、立柱即面的垂线是关键)一面四直线,立柱是关键,垂直三处见 59.线面平行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈;面面平行的判定定理易把条件错误地记为”一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行”而导致证明过程跨步太大。 60.求两条异面直线所成的角、直线与平面所成的角和二面角时,假如所求的角为90°,那么就不要忘了还有一种求角的方法即用证明它们垂直的方法。 61.异面直线所成角利用“平移法”求解时,肯定要留意平移后所得角等于所求角(或其补角),特殊是题目告知异面直线所成角,应用时肯定要从题意动身,是用锐角还是其补角,还是两种状况都有可能。 62.你知道公式:和中每一字母的意思吗?能够娴熟地应用它们解题吗? 63.两条异面直线所成的角的范围:0°≤α≤90° 直线与平面所成的角的范围:0°≤α≤90° 二面角的平面角的取值范围:0°≤α≤180° 64.你知道异面直线上两点间的距离公式如何运用吗? 65.平面图形的翻折,立体图形的绽开等一类问题,要留意翻折,绽开前后有关几何元素的“不变量”与“不变性”。 66.立几问题的求解分为“作”,“证”,“算”三个环节,你是否只注意了“作”,“算”,而忽视了“证”这一重要环节? 67.棱柱及其性质、平行六面体与长方体及其性质。这些学问你驾驭了吗?(留意运用向量的方法解题) 68.球及其性质;经纬度定义易混。经度为二面角,纬度为线面角、球面距离的求法;球的表面积和体积公式。这些学问你驾驭了吗? 八、排列、组合和概率 69.解排列组合问题的依据是:分类相加,分步相乘,有序排列,无序组合。 解排列组合问题的规律是:相邻问题捆绑法;不邻问题插空法;多排问题单排法;定位问题优先法;定序问题倍缩法;多元问题分类法;有序安排问题法;选取问题先排后排法;至多至少问题间接法。 70.二项式系数与绽开式某一项的系数易混,第r+1项的二项式系数为。二项式系数最大项与绽开式中系数最大项易混。二项式系数最大项为中间一项或两项;绽开式中系数最大项的求法要用解不等式组来确定r. 71.你驾驭了三种常见的概率公式吗?(等可能事务的概率公式;互斥事务有一个发生的概率公式;相互独立事务同时发生的概率公式。) 72.二项式绽开式的通项公式、n次独立重复试验中事务A发生k次的概率易记混。 通项公式:它是第r+1项而不是第r项; 事务A发生k次的概率:。其中k=0,1,2,3,n,且0 73.求分布列的解答题你能把步骤写全吗? 74.如何对总体分布进行估计?(用样本估计总体,是探讨统计问题的一个基本思想方法,一般地,样本容量越大,这种估计就越精确,要求能画出频率分布表和频率分布直方图;理解频率分布直方图矩形面积的几何意义。) 75.你还记得一般正态总体如何化为标准正态总体吗?(对任一正态总体来说,取值小于x的概率,其中表示标准正态总体取值小于的概率) 九、导数及其应用 76.在点处可导的定义你还记得吗?它的几何意义和物理意义分别是什么?利用导数可解决哪些问题?详细步骤还记得吗? 77.你会用“在其定义域内可导,且不恒为零,则在某区间上单调递增(减)对恒成立。”解决有关函数的单调性问题吗? 78.你知道“函数在点处可导”是“函数在点处连续”的什么条件吗? 第11页 共11页第 11 页 共 11 页第 11 页 共 11 页第 11 页 共 11 页第 11 页 共 11 页第 11 页 共 11 页第 11 页 共 11 页第 11 页 共 11 页第 11 页 共 11 页第 11 页 共 11 页第 11 页 共 11 页