2022年高二年级人教版数学必考知识点.docx
2022年高二年级人教版数学必考知识点 在学习新学问的同时还要复习以前的旧学问,确定会累,所以要留意劳逸结合。只有充足的精力才能迎接新的挑战,才会有事半功倍的学习。以下是我给大家整理的高二年级人教版数学必考学问点,希望大家能够喜爱! 高二年级人教版数学必考学问点1 一、随机事务 主要驾驭好(三四五) (1)事务的三种运算:并(和)、交(积)、差;留意差A-B可以表示成A与B的逆的积。 (2)四种运算律:交换律、结合律、安排律、德莫根律。 (3)事务的五种关系:包含、相等、互斥(互不相容)、对立、相互独立。 二、概率定义 (1)统计定义:频率稳定在一个数旁边,这个数称为事务的概率;(2)古典定义:要求样本空间只有有限个基本领件,每个基本领件出现的可能性相等,则事务A所含基本领件个数与样本空间所含基本领件个数的比称为事务的古典概率; (3)几何概率:样本空间中的元素有无穷多个,每个元素出现的可能性相等,则可以将样本空间看成一个几何图形,事务A看成这个图形的子集,它的概率通过子集图形的大小与样本空间图形的大小的比来计算; (4)公理化定义:满意三条公理的任何从样本空间的子集集合到0,1的映射。 三、概率性质与公式 (1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特殊地,假如A与B互不相容,则P(A+B)=P(A)+P(B); (2)差:P(A-B)=P(A)-P(AB),特殊地,假如B包含于A,则P(A-B)=P(A)-P(B); (3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特殊地,假如A与B相互独立,则P(AB)=P(A)P(B); (4)全概率公式:P(B)=P(Ai)P(B|Ai).它是由因求果, 贝叶斯公式:P(Aj|B)=P(Aj)P(B|Aj)/P(Ai)P(B|Ai).它是由果索因; 假如一个事务B可以在多种情形(缘由)A1,A2,.,An下发生,则用全概率公式求B发生的概率;假如事务B已经发生,要求它是由Aj引起的概率,则用贝叶斯公式. (5)二项概率公式:Pn(k)=C(n,k)pk(1-p)(n-k),k=0,1,2,.,n.当一个问题可以看成n重贝努力试验(三个条件:n次重复,每次只有A与A的逆可能发生,各次试验结果相互独立)时,要考虑二项概率公式. 高二年级人教版数学必考学问点2 (1)定义: 对于函数y=f(x)(xD),把使f(x)=0成立的实数x叫做函数y=f(x)(xD)的零点。 (2)函数的零点与相应方程的根、函数的图象与x轴交点间的关系: 方程f(x)=0有实数根?函数y=f(x)的图象与x轴有交点?函数y=f(x)有零点。 (3)函数零点的判定(零点存在性定理): 假如函数y=f(x)在区间a,b上的图象是连绵不断的一条曲线,并且有f(a)·f(b)0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根。 二二次函数y=ax2+bx+c(a0)的图象与零点的关系 三二分法 对于在区间a,b上连绵不断且f(a)·f(b)0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步靠近零点,进而得到零点近似值的方法叫做二分法。 1、函数的零点不是点: 函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图象与x轴交点的横坐标,所以函数的零点是一个数,而不是一个点.在写函数零点时,所写的肯定是一个数字,而不是一个坐标。 2、对函数零点存在的推断中,必需强调: (1)、f(x)在a,b上连续; (2)、f(a)·f(b)0; (3)、在(a,b)内存在零点。 这是零点存在的一个充分条件,但不必要。 3、对于定义域内连绵不断的函数,其相邻两个零点之间的全部函数值保持同号。 利用函数零点的存在性定理推断零点所在的区间时,首先看函数y=f(x)在区间a,b上的图象是否连绵不断,再看是否有f(a)·f(b)0.若有,则函数y=f(x)在区间(a,b)内必有零点。 四推断函数零点个数的常用方法 1、解方程法: 令f(x)=0,假如能求出解,则有几个解就有几个零点。 2、零点存在性定理法: 利用定理不仅要推断函数在区间a,b上是连绵不断的曲线,且f(a)·f(b)0,还必需结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点。 3、数形结合法: 转化为两个函数的图象的交点个数问题.先画出两个函数的图象,看其交点的个数,其中交点的个数,就是函数零点的个数。 已知函数有零点(方程有根)求参数取值常用的方法 1、干脆法: 干脆依据题设条件构建关于参数的不等式,再通过解不等式确定参数范围。 2、分别参数法: 先将参数分别,转化成求函数值域问题加以解决。 3、数形结合法: 先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解。 高二年级人教版数学必考学问点3 1.解不等式问题的分类 (1)解一元一次不等式. (2)解一元二次不等式. (3)可以化为一元一次或一元二次不等式的不等式. 解一元高次不等式; 解分式不等式; 解无理不等式; 解指数不等式; 解对数不等式; 解带肯定值的不等式; 解不等式组. 2.解不等式时应特殊留意下列几点: (1)正确应用不等式的基本性质. (2)正确应用幂函数、指数函数和对数函数的增、减性. (3)留意代数式中未知数的取值范围. 3.不等式的同解性 (5)|f(x)| (6)|f(x)|g(x)与f(x)g(x)或f(x)-g(x)(其中g(x)0)同解;与g(x)0同解. (9)当a1时,af(x)ag(x)与f(x)g(x)同解,当0ag(x)与f(x) 高二年级人教版数学必考学问点第6页 共6页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页