欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022年高中数学知识点 4.pdf

    • 资源ID:25456083       资源大小:88.62KB        全文页数:22页
    • 资源格式: PDF        下载积分:4.3金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要4.3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022年高中数学知识点 4.pdf

    知识点大全高中数学知识点(内容与广东高考要求)数学 1 (必修)1集合(约 4 课时)(1)集合的含义与表示 通过实例,了解集合的含义,体会元素与集合的“属于”关系。 能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。(2)集合间的基本关系 理解集合之间包含与相等的含义,能识别给定集合的子集。 在具体情境中,了解全集与空集的含义。(3)集合的基本运算 理解两个集合的并集与交集的含义, 会求两个简单集合的并集与交集。 理解在给定集合中一个子集的补集的含义,会求给定子集的补集。 能使用 Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。2函数概念与基本初等函数I (约 32课时)(1)函数通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。 在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 22 页知识点大全 通过具体实例,了解简单的分段函数,并能简单应用。 通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解奇偶性的含义。 学会运用函数图象理解和研究函数的性质(参见例1)。(2)指数函数 通过具体实例 (如细胞的分裂, 考古中所用的 14C的衰减,药物在人体内残留量的变化等),了解指数函数模型的实际背景。 理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。 理解指数函数的概念和意义, 能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。 在解决简单实际问题的过程中, 体会指数函数是一类重要的函数模型(参见例 2)。(3)对数函数理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及对简化运算的作用。通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点。 知道指数函数 y=ax 与对数函数 y=loga x 互为反函数(a 0, a1) 。(4)幂函数通过实例,了解幂函数的概念;结合函数y=x, y=x2, y=x3, , 的图象,了解它们的变化情况。(5)函数与方程精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 22 页知识点大全 结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系。 根据具体函数的图象, 能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。(6)函数模型及其应用利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。 收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。(7)实习作业根据某个主题,收集17 世纪前后发生的一些对数学发展起重大作用的历史事件和人物(开普勒、伽利略、笛卡儿、牛顿、莱布尼茨、欧拉等)的有关资料或现实生活中的函数实例, 采取小组合作的方式写一篇有关函数概念的形成、发展或应用的文章,在班级中进行交流。具体要求参见数学文化的要求。数学 2 (必修)1立体几何初步(约18 课时)(1)空间几何体利用实物模型、计算机软件观察大量空间图形,认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构。能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会使用材料(如纸板)制作模型,会用斜二侧法画出它们的直观图。 通过观察用两种方法 (平行投影与中心投影) 画出的视图与直观图,了解空间图形的不同表示形式。 完成实习作业, 如画出某些建筑的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求)。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 22 页知识点大全 了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。(2)点、线、面之间的位置关系借助长方体模型,在直观认识和理解空间点、线、面的位置关系的基础上,抽象出空间线、面位置关系的定义,并了解如下可以作为推理依据的公理和定理。以立体几何的上述定义、公理和定理为出发点,通过直观感知、操作确认、思辨论证,认识和理解空间中线面平行、垂直的有关性质与判定。通过直观感知、操作确认,归纳出以下判定定理。能运用已获得的结论证明一些空间位置关系的简单命题。2平面解析几何初步(约18 课时)(1)直线与方程在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素。理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式。能根据斜率判定两条直线平行或垂直。根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系。能用解方程组的方法求两直线的交点坐标。探索并掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。(2)圆与方程回顾确定圆的几何要素,在平面直角坐标系中,探索并掌握圆的标准方程与一般方程。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 22 页知识点大全能根据给定直线、 圆的方程,判断直线与圆、 圆与圆的位置关系。能用直线和圆的方程解决一些简单的问题。(3)在平面解析几何初步的学习过程中,体会用代数方法处理几何问题的思想。(4)空间直角坐标系通过具体情境,感受建立空间直角坐标系的必要性,了解空间直角坐标系,会用空间直角坐标系刻画点的位置。通过表示特殊长方体(所有棱分别与坐标轴平行)顶点的坐标,探索并得出空间两点间的距离公式。数学 3 (必修)1算法初步(约 12 课时)(1)算法的含义、程序框图通过对解决具体问题过程与步骤的分析(如二元一次方程组求解等问题),体会算法的思想,了解算法的含义。通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程。在具体问题的解决过程中(如三元一次方程组求解等问题),理解程序框图的三种基本逻辑结构:顺序、条件分支、循环。(2)基本算法语句经历将具体问题的程序框图转化为程序语句的过程,理解几种基本算法语句 - 输入语句、输出语句、赋值语句、条件语句、循环语句,进一步体会算法的基本思想。(3)通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。2统计(约 16 课时)(1)随机抽样精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 22 页知识点大全(2)用样本估计总体(3)变量的相关性通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系。经历用不同估算方法描述两个变量线性相关的过程。知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程(参见例 2)。3概率(约 8 课时)(1) 在具体情境中,了解随机事件发生的不确定性和频率的稳定性,进一步了解概率的意义以及频率与概率的区别。(2)通过实例,了解两个互斥事件的概率加法公式。(3)通过实例, 理解古典概型及其概率计算公式,会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。(4)了解随机数的意义, 能运用模拟方法 (包括计算器产生随机数来进行模拟)估计概率,初步体会几何概型的意义(参见例3)。(5)通过阅读材料,了解人类认识随机现象的过程。数学 4(必修)1三角函数(约 16 课时)(1)任意角、弧度了解任意角的概念和弧度制,能进行弧度与角度的互化。(2)三角函数借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义。借助单位圆中的三角函数线推导出诱导公式(/2 , 的正弦、余弦、正切),能画出y=sin x, y=cosx, y=tan x的图象,了解三角函数的周期性。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 22 页知识点大全借助图象理解正弦函数、余弦函数在0 ,2 ,正切函数在( -/2 ,/2 )上的性质(如单调性、最大和最小值、 图象与 x 轴交点等)。理解同角三角函数的基本关系式:sin2x+cos2x=1 ,sin x/cos x=tan x 。结合具体实例, 了解 y=Asin 的实际意义; 能借助计算器或计算机画出 y=Asin 的图象,观察参数A,对函数图象变化的影响。会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化现象的重要函数模型。2平面向量(约 12 课时)(1)平面向量的实际背景及基本概念(2)向量的线性运算(3)平面向量的基本定理及坐标表示(4)平面向量的数量积(5)向量的应用经历用向量方法解决某些简单的平面几何问题、力学问题与其他一些实际问题的过程, 体会向量是一种处理几何问题、物理问题等的工具,发展运算能力和解决实际问题的能力。3三角恒等变换(约8 课时)(1)经历用向量的数量积推导出两角差的余弦公式的过程,进一步体会向量方法的作用。(2)能从两角差的余弦公式导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解它们的内在联系。(3) 能运用上述公式进行简单的恒等变换 (包括引导导出积化和差、和差化积、半角公式,但不要求记忆)。数学 5(必修)1解三角形(约 8 课时)精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 7 页,共 22 页知识点大全(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、 余弦定理,并能解决一些简单的三角形度量问题。(2)能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。2数列(约 12 课时)(1)数列的概念和简单表示法通过日常生活中的实例, 了解数列的概念和几种简单的表示方法 (列表、图象、通项公式),了解数列是一种特殊函数。(2)等差数列、等比数列通过实例,理解等差数列、等比数列的概念。探索并掌握等差数列、等比数列的通项公式与前n 项和的公式。能在具体的问题情境中,发现数列的等差关系或等比关系,并能用有关知识解决相应的问题(参见例1)。体会等差数列、等比数列与一次函数、指数函数的关系。3不等式(约 16 课时)(1)不等关系通过具体情境,感受在现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景。(2)一元二次不等式经历从实际情境中抽象出一元二次不等式模型的过程。通过函数图象了解一元二次不等式与相应函数、方程的联系。会解一元二次不等式,对给定的一元二次不等式,尝试设计求解的程序框图。(3)二元一次不等式组与简单线性规划问题从实际情境中抽象出二元一次不等式组。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 8 页,共 22 页知识点大全了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组(参见例 2)。从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决(参见例 3)。(4)基本不等式:探索并了解基本不等式的证明过程。会用基本不等式解决简单的最大(小)值问题(参见例4)。选修 1-1本模块中, 学生将学习常用逻辑用语、 圆锥曲线与方程、 导数及其应用。1常用逻辑用语(约8 课时)(1)命题及其关系了解命题的逆命题、否命题与逆否命题。理解必要条件、充分条件与充要条件的意义,会分析四种命题的相互关系。(2)简单的逻辑联结词通过数学实例,了解逻辑联结词“或”“且”“非”的含义。(3)全称量词与存在量词通过生活和数学中的丰富实例, 理解全称量词与存在量词的意义。能正确地对含有一个量词的命题进行否定。2圆锥曲线与方程(约12 课时)(1)了解圆锥曲线的实际背景, 感受圆锥曲线在刻画现实世界和解决实际问题中的作用。(2)经历从具体情境中抽象出椭圆模型的过程(参见例1),掌握椭圆的定义、标准方程及简单几何性质。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 9 页,共 22 页知识点大全(3)了解抛物线、双曲线的定义、几何图形和标准方程,知道它们的简单几何性质。(4)通过圆锥曲线与方程的学习,进一步体会数形结合的思想。(5)了解圆锥曲线的简单应用。3导数及其应用(约16 课时)(1)导数概念及其几何意义通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵(参见例2、例 3)。通过函数图象直观地理解导数的几何意义。(2)导数的运算 能根据导数定义,求函数y=c,y=x,y=x2,y=1/x 的导数。 能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数。 会使用导数公式表。(3)导数在研究函数中的应用结合实例,借助几何直观探索并了解函数的单调性与导数的关系(参见例 4);能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间。结合函数的图象,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及在给定区间上不超过三次的多项式函数的最大值、最小值。(4)生活中的优化问题举例例如,通过使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用(参见例5)。(5)数学文化精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 10 页,共 22 页知识点大全收集有关微积分创立的时代背景和有关人物的资料,并进行交流;体会微积分的建立在人类文化发展中的意义和价值。具体要求见本标准中“数学文化”的要求。选修 1-2 在本模块中,学生将学习统计案例、推理与证明、数系扩充及复数的引入、框图。1统计案例(约 14 课时)通过典型案例,学习下列一些常见的统计方法,并能初步应用这些方法解决一些实际问题。(1)通过对典型案例(如“肺癌与吸烟有关吗”等)的探究,了解独立性检验(只要求 22 列联表)的基本思想、方法及初步应用。(2)通过对典型案例(如“质量控制”“新药是否有效”等)的探究,了解实际推断原理和假设检验的基本思想、方法及初步应用(参见例 1) 。(3)通过对典型案例(如“昆虫分类”等)的探究,了解聚类分析的基本思想、方法及初步应用。(4)通过对典型案例(如“人的体重与身高的关系”等)的探究,进一步了解回归的基本思想、方法及初步应用。2推理与证明(约10 课时)(1)合情推理与演绎推理结合已学过的数学实例和生活中的实例,了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用(参见例2、例 3)。结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本方法,并能运用它们进行一些简单推理。通过具体实例,了解合情推理和演绎推理之间的联系和差异。(2)直接证明与间接证明精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 11 页,共 22 页知识点大全结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点。结合已经学过的数学实例,了解间接证明的一种基本方法反证法;了解反证法的思考过程、特点。(3)数学文化通过对实例的介绍 (如欧几里得几何原本 、 马克思资本论、杰弗逊独立宣言、牛顿三定律),体会公理化思想。介绍计算机在自动推理领域和数学证明中的作用。3数系的扩充与复数的引入(约4 课时)(1)在问题情境中了解数系的扩充过程,体会实际需求与数学内部的矛盾(数的运算规则、方程求根)在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系。(2)理解复数的基本概念以及复数相等的充要条件。(3)了解复数的代数表示法及其几何意义。(4) 能进行复数代数形式的四则运算,了解复数代数形式的加、减运算的几何意义。4框图(约 6 课时)(1)流程图通过具体实例,进一步认识程序框图。通过具体实例, 了解工序流程图 (即统筹图)(参见例 4、例 5)。能绘制简单实际问题的流程图,体会流程图在解决实际问题中的作用。(2)结构图通过实例,了解结构图;运用结构图梳理已学过的知识、整理收集到的资料信息。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 12 页,共 22 页知识点大全结合作出的结构图与他人进行交流,体会结构图在揭示事物联系中的作用。选修 2-1 在本模块中,学生将学习常用逻辑用语、圆锥曲线与方程、空间中的向量(简称空间向量)与立体几何。1常用逻辑用语(约8 课时)(1)命题及其关系 了解命题的逆命题、否命题与逆否命题。 理解必要条件、 充分条件与充要条件的意义, 会分析四种命题的相互关系。(2)简单的逻辑联结词通过数学实例,了解逻辑联结词“或”“且”“非”的含义。(3)全称量词与存在量词 通过生活和数学中的丰富实例,理解全称量词与存在量词的意义。 能正确地对含有一个量词的命题进行否定。2圆锥曲线与方程(约16 课时) (1)圆锥曲线 了解圆锥曲线的实际背景, 感受圆锥曲线在刻画现实世界和解决实际问题中的作用。 经历从具体情境中抽象出椭圆、 抛物线模型的过程, 掌握它们的定义、标准方程、几何图形及简单性质。 了解双曲线的定义、 几何图形和标准方程, 知道双曲线的有关性质。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 13 页,共 22 页知识点大全 能用坐标法解决一些与圆锥曲线有关的简单几何问题(直线与圆锥曲线的位置关系)和实际问题。 通过圆锥曲线的学习,进一步体会数形结合的思想。(2)曲线与方程结合已学过的曲线及其方程的实例,了解曲线与方程的对应关系,进一步感受数形结合的基本思想。3空间向量与立体几何 ( 约 12 课时) (1)空间向量及其运算 经历向量及其运算由平面向空间推广的过程。 了解空间向量的概念, 了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示。 掌握空间向量的线性运算及其坐标表示。 掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直。(2)空间向量的应用 理解直线的方向向量与平面的法向量。 能用向量语言表述线线、线面、面面的垂直、平行关系。 能用向量方法证明有关线、 面位置关系的一些定理 (包括三垂线定理)(参见例 1、例 2、例 3)。 能用向量方法解决线线、 线面、面面的夹角的计算问题, 体会向量方法在研究几何问题中的作用。选修 2-2 在本模块中,学生将学习导数及其应用、推理与证明、数系的扩充与复数的引入。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 14 页,共 22 页知识点大全1导数及其应用(约24 课时)(1)导数概念及其几何意义通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵(参见选修1-1 案例中的例 2、例 3)。通过函数图象直观地理解导数的几何意义。(2)导数的运算 能根据导数定义求函数y=c,y=x,y=x2,y=x3,y=1/x, y=的导数。能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f (ax+b)的导数。 会使用导数公式表。(3)导数在研究函数中的应用结合实例,借助几何直观探索并了解函数的单调性与导数的关系(参见选修 1-1 案例中的例 4);能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间。结合函数的图象,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。(4)生活中的优化问题举例。例如,通过使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用。(参见选修1-1 案例中的例 5)(5)定积分与微积分基本定理精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 15 页,共 22 页知识点大全通过实例(如求曲边梯形的面积、变力做功等),从问题情境中了解定积分的实际背景;借助几何直观体会定积分的基本思想,初步了解定积分的概念。 通过实例(如变速运动物体在某段时间内的速度与路程的关系),直观了解微积分基本定理的含义。(参见例1)(6)数学文化收集有关微积分创立的时代背景和有关人物的资料,并进行交流;体会微积分的建立在人类文化发展中的意义和价值。具体要求见本标准中“数学文化”的要求。2推理与证明(约8 课时)(1)合情推理与演绎推理结合已学过的数学实例和生活中的实例,了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用(参见选修2-2 案例中的例 2、例 3)。结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理。通过具体实例,了解合情推理和演绎推理之间的联系和差异。(2)直接证明与间接证明结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点。结合已经学过的数学实例,了解间接证明的一种基本方法反证法;了解反证法的思考过程、特点。(3)数学归纳法了解数学归纳法的原理, 能用数学归纳法证明一些简单的数学命题。(4)数学文化精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 16 页,共 22 页知识点大全通过对实例的介绍 (如欧几里得几何原本 、 马克思资本论、杰弗逊独立宣言、牛顿三定律),体会公理化思想。介绍计算机在自动推理领域和数学证明中的作用。3数系的扩充与复数的引入(约4 课时)(1)在问题情境中了解数系的扩充过程,体会实际需求与数学内部的矛盾(数的运算规则、方程理论)在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系。(2)理解复数的基本概念以及复数相等的充要条件。(3)了解复数的代数表示法及其几何意义。(4)能进行复数代数形式的四则运算,了解复数代数形式的加、 减运算的几何意义。选修 2-3 在本模块中,学生将学习计数原理、统计案例、概率。1计数原理 (约 14 课时) (1)分类加法计数原理、分步乘法计数原理通过实例,总结出分类加法计数原理、分步乘法计数原理;能根据具体问题的特征,选择分类加法计数原理或分步乘法计数原理解决一些简单的实际问题。(2)排列与组合通过实例,理解排列、组合的概念;能利用计数原理推导排列数公式、组合数公式,并能解决简单的实际问题。(3)二项式定理能用计数原理证明二项式定理(参见例1); 会用二项式定理解决与二项展开式有关的简单问题。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 17 页,共 22 页知识点大全2统计与概率(约22 课时)(1)概率 在对具体问题的分析中, 理解取有限值的离散型随机变量及其分布列的概念,认识分布列对于刻画随机现象的重要性。 通过实例(如彩票抽奖),理解超几何分布及其导出过程,并能进行简单的应用(参见例2)。在具体情境中,了解条件概率和两个事件相互独立的概念,理解n 次独立重复试验的模型及二项分布, 并能解决一些简单的实际问题 (参见例 3)。通过实例,理解取有限值的离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题。 通过实际问题,借助直观(如实际问题的直方图),认识正态分布曲线的特点及曲线所表示的意义。(2)统计案例通过典型案例,学习下列一些常见的统计方法,并能初步应用这些方法解决一些实际问题。 通过对典型案例(如“肺癌与吸烟有关吗”等)的探究,了解独立性检验(只要求22 列联表)的基本思想、方法及初步应用。通过对典型案例(如“质量控制”“新药是否有效”等)的探究,了解实际推断原理和假设检验的基本思想、方法及初步应用(参见选修系列 1-2 案例中的例 1)。 通过对典型案例(如“昆虫分类”等)的探究,了解聚类分析的基本思想、方法及其初步应用。 通过对典型案例(如“人的体重与身高的关系”等)的探究,了解回归的基本思想、方法及其初步应用。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 18 页,共 22 页知识点大全几何证明选讲1复习相似三角形的定义与性质,了解平行截割定理, 证明直角三角形射影定理。2证明圆周角定理、圆的切线的判定定理及性质定理。3证明相交弦定理、 圆内接四边形的性质定理与判定定理、切割线定理。4了解平行投影的含义, 通过圆柱与平面的位置关系,体会平行投影;证明平面与圆柱面的截线是椭圆(特殊情形是圆)。5通过观察平面截圆锥面的情境,体会下面定理:定理在空间中,取直线l 为轴,直线 l 与 l 相交于 O点,其夹角为,l 围绕 l 旋转得到以 O为顶点,l 为母线的圆锥面, 任取平面 ,若它与轴 l 交角为 (与 l 平行,记 0),则:(1),平面 与圆锥的交线为椭圆;(2),平面 与圆锥的交线为抛物线;(3),平面 与圆锥的交线为双曲线。6利用 Dandelin 双球(这两个球位于圆锥的内部,一个位于平面的上方,一个位于平面的下方,并且与平面及圆锥均相切)证明上述定理( 1)情况。7试证明以下结果:在6 中,一个 Dandelin 球与圆锥面的交线为一个圆, 并与圆锥的底面平行, 记这个圆所在平面为 ;如果平面与平面 的交线为 m ,在 5(1)中椭圆上任取一点A,该 Dandelin球与平面 的切点为 F,则点 A到点 F 的距离与点 A到直线 m的距离比是小于 1 的常数 e。(称点 F 为这个椭圆的焦点,直线m为椭圆的准线,常数 e 为离心率。)8探索定理中( 3)的证明,体会当 无限接近 时平面 的极限结果。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 19 页,共 22 页知识点大全9完成一个学习总结报告。报告应包括三方面的内容:(1)知识的总结。对本专题整体结构和内容的理解,对数学证明的认识。(2)拓展。通过查阅资料、 独立思考,对某些内容和应用进行进一步探讨。(3)学习本专题的感受、体会。坐标系与参数方程选讲坐标系,极坐标(1)回顾在平面直角坐标系中刻画点的位置的方法,体会坐标系的作用。(2)通过具体例子, 了解在平面直角坐标系伸缩变换作用下平面图形的变化情况。(3)能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别, 能进行极坐标和直角坐标的互化。(4)能在极坐标系中给出简单图形 (如过极点的直线、 过极点或圆心在极点的圆)的方程。通过比较这些图形在极坐标系和平面直角坐标系中的方程,体会在用方程刻画平面图形时选择适当坐标系的意义。(5)借助具体实例(如圆形体育场看台的座位、地球的经纬度等)了解在柱坐标系、球坐标系中刻画空间中点的位置的方法,并与空间直角坐标系中刻画点的位置的方法相比较,体会它们的区别。参数方程(1)通过分析抛物运动中时间与运动物体位置的关系,写出抛物运动轨迹的参数方程,体会参数的意义。(2)分析直线、 圆和圆锥曲线的几何性质, 选择适当的参数写出它们的参数方程。(3)举例说明某些曲线用参数方程表示比用普通方程表示更方便,感受参数方程的优越性。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 20 页,共 22 页知识点大全(4)借助教具或计算机软件, 观察圆在直线上滚动时圆上定点的轨迹(平摆线)、直线在圆上滚动时直线上定点的轨迹(渐开线),了解平摆线和渐开线的生成过程,并能推导出它们的参数方程。(5)通过阅读材料,了解其他摆线(变幅平摆线、变幅渐开线、外摆线、内摆线、环摆线)的生成过程; 了解摆线在实际中应用的实例 (例如,最速降线是平摆线,椭圆是特殊的内摆线卡丹转盘,圆摆线齿轮与渐开线齿轮,收割机、翻土机等机械装置的摆线原理与设计,星形线与公共汽车门);了解摆线在刻画行星运动轨道中的作用。3. 完成一个学习总结报告报告应包括三方面的内容:(1)知识的总结。 对本专题整体结构和内容的理解,进一步认识数形结合思想,思考本专题与高中其他内容之间的联系。(2)拓展。通过查阅资料、调查研究、访问求教、独立思考,进一步探讨参数方程、摆线的应用。(3)学习本专题的感受、体会。不等式选讲1回顾和复习不等式的基本性质和基本不等式。2理解绝对值的几何意义, 并能利用绝对值不等式的几何意义证明以下不等式:(1)ab a b;(2)ab ac cb;(3)会利用绝对值的几何意义求解以下类型的不等式:axbc;axbc;xc xba。3认识柯西不等式的几种不同形式。理解它们的几何意义。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 21 页,共 22 页知识点大全(1)证明:柯西不等式向量形式:| | | | | 。(2)证明:( a2+b2)(c2+d2) (ac+bd)2 。(3)证明:(通常称作平面三角不等式)。4用参数配方法讨论柯西不等式的一般情况:5用向量递归方法讨论排序不等式。6了解数学归纳法的原理及其使用范围,会用数学归纳法证明一些简单问题。7会用数学归纳法证明贝努利不等式:(1 x)n 1nx(x1,x0,n 为正整数)。了解当 n为实数时贝努利不等式也成立。8会用上述不等式证明一些简单问题。能够利用平均值不等式、 柯西不等式求一些特定函数的极值。9 通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法。10完成一个学习总结报告。报告应包括三方面的内容:(1)知识的总结。 对本专题介绍的不等式中蕴涵的数学思想方法和数学背景进行总结。(2)拓展。通过查阅资料、调查研究、访问求教、独立思考,进一步探讨不等式的应用。(3)对不等式学习的感受、体会。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 22 页,共 22 页

    注意事项

    本文(2022年高中数学知识点 4.pdf)为本站会员(Q****o)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开