2022年高考2022文科数学知识难点整理.docx
-
资源ID:25456966
资源大小:21.02KB
全文页数:10页
- 资源格式: DOCX
下载积分:10金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年高考2022文科数学知识难点整理.docx
2022年高考2022文科数学知识难点整理 学问驾驭的巅峰,应当在一轮复习之后,也就是在你把全部学问重新捡起来之后。这样看来,应对高二这一改变的较优选择,是在高二还在学习新学问时,有意识地把高一内容从头捡起,自己规划进度,提前复习。接下来是我为大家整理的高考2022文科数学学问难点整理,希望大家喜爱! 高考2022文科数学学问难点整理一 1.不等式证明的依据 (2)不等式的性质(略) (3)重要不等式:|a|0;a20;(a-b)20(a、bR) a2+b22ab(a、bR,当且仅当a=b时取“=”号) 2.不等式的证明方法 (1)比较法:要证明ab(a0(a-b0),这种证明不等式的方法叫做比较法. 用比较法证明不等式的步骤是:作差变形推断符号. (2)综合法:从已知条件动身,依据不等式的性质和已证明过的不等式,推导出所要证明的不等式成立,这种证明不等式的方法叫做综合法. (3)分析法:从欲证的不等式动身,逐步分析使这不等式成立的充分条件,直到所需条件已推断为正确时,从而断定原不等式成立,这种证明不等式的方法叫做分析法. 证明不等式除以上三种基本方法外,还有反证法、数学归纳法等. 高考2022文科数学学问难点整理二 导数是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量x时,函数输出值的增量y与自变量增量x的比值在x趋于0时的极限a假如存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。 导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点旁边的改变率。假如函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性靠近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。 不是全部的函数都有导数,一个函数也不肯定在全部的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不行导。然而,可导的函数肯定连续;不连续的函数肯定不行导。 对于可导的函数f(x),x?f'(x)也是一个函数,称作f(x)的导函数。找寻已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明白求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。 高考2022文科数学学问难点整理三 1.在中学我们只研直圆柱、直圆锥和直圆台。所以对圆柱、圆锥、圆台的旋转定义、事实上是直圆柱、直圆锥、直圆台的定义。 这样定义直观形象,便于理解,而且对它们的性质也易推导。 对于球的定义中,要留意区分球和球面的概念,球是实心的。 等边圆柱和等边圆锥是特别圆柱和圆锥,它是由其轴截面来定义的,在实践中运用较广,要留意与一般圆柱、圆锥的区分。 2.圆柱、圆锥、圆和球的性质 (1)圆柱的性质,要强调两点:一是连心线垂直圆柱的底面;二是三个截面的性质平行于底面的截面是与底面全等的圆;轴截面是一个以上、下底面圆的直径和母线所组成的矩形;平行于轴线的截面是一个以上、下底的圆的弦和母线组成的矩形。 (2)圆锥的性质,要强调三点 平行于底面的截面圆的性质: 截面圆面积和底面圆面积的比等于从顶点到截面和从顶点究竟面距离的平方比。 过圆锥的顶点,且与其底面相交的截面是一个由两条母线和底面圆的弦组成的等腰三角形,其面积为: 易知,截面三角形的顶角不大于轴截面的顶角(如图10-20),事实上,由BCAB,VC=VB=VA可得AVBBVC. 由于截面三角形的顶角不大于轴截面的顶角。 所以,当轴截面的顶角90°,有0°90°,即有 当轴截面的顶角90°时,轴截面的面积却不是的,这是因为,若90°180°时,1sinsin0. 圆锥的母线l,高h和底面圆的半径组成一个直径三角形,圆锥的有关计算问题,一般都要归结为解这个直角三角形,特殊是关系式 l2=h2+R2 (3)圆台的性质,都是从“圆台为截头圆锥”这个事实推得的,高考,但仍要强调下面几点: 圆台的母线共点,所以任两条母线确定的截面为一等腰梯形,但是,与上、下底面都相交的截面不肯定是梯形,更不肯定是等腰梯形。 平行于底面的截面若将圆台的高分成距上、下两底为两段的截面面积为S,则 其中S1和S2分别为上、下底面面积。 的截面性质的推广。 圆台的母线l,高h和上、下两底圆的半径r、R,组成一个直角梯形,且有 l2=h2+(R-r)2 圆台的有关计算问题,常归结为解这个直角梯形。 (4)球的性质,着重驾驭其截面的性质。 用随意平面截球所得的截面是一个圆面,球心和截面圆圆心的连线与这个截面垂直。 假如用R和r分别表示球的半径和截面圆的半径,d表示球心到截面的距离,则 R2=r2+d2 即,球的半径,截面圆的半径,和球心到截面的距离组成一个直角三角形,有关球的计算问题,常归结为解这个直角三角形。 3.圆柱、圆锥、圆台和球的表面积 (1)圆柱、圆锥、圆台和多面体一样都是可以平面绽开的。 圆柱、圆锥、圆台的侧面绽开图,是求其侧面积的基本依据。 圆柱的侧面绽开图,是由底面图的周长和母线长组成的一个矩形。 圆锥和侧面绽开图是一个由两条母线长和底面圆的周长组成的扇形,其扇形的圆心角为 圆台的侧面绽开图是一个由两条母线长和上、下底面周长组成的扇环,其扇环的圆心角为 这个公式有利于空间几何体和其侧面绽开图的互化 明显,当r=0时,这个公式就是圆锥侧面绽开图扇形的圆心角公式,所以,圆锥侧面绽开图扇形的圆心角公式是圆台相关角的特例。 (2)圆柱、圆锥和圆台的侧面公式为 S侧=(r+R)l 当r=R时,S侧=2Rl,即圆柱的侧面积公式。 当r=0时,S侧=rRl,即圆锥的面积公式。 要重视,侧面积间的这种关系。 (3)球面是不能平面绽开的图形,所以,求它的面积的方法与柱、锥、台的方法完全不同。 推导出来,要用“微积分”等高等数学的学问,课本上不能算是一种证明。 求不规则圆形的度量属性的常用方法是“细分求和取极限”,这种方法,在学完“微积分”的相关内容后,不证自明,这里从略。 4.画圆柱、圆锥、圆台和球的直观图的方法正等测 (1)正等测画直观图的要求: 画正等测的X、Y、Z三个轴时,z轴画成铅直方向,X轴和Y轴各与Z轴成120°。 在投影图上取线段长度的方法是:在三轴上或平行于三轴的线段都取实长。 这里与斜二测画直观图的方法不同,要留意它们的区分。 (2)正等测圆柱、圆锥、圆台的直观图的区分主要是水平放置的平面图形。 用正等测画水平放置的平面圆形时,将X轴画成水平位置,Y轴画成与X轴成120°,在投影图上,X轴和Y轴上,或与X轴、Y轴平行的线段都取实长,在Z轴上或与Z轴平行的线段的画法与斜二测相同,也都取实长。 5.关于几何体表面内两点间的最短距离问题 柱、锥、台的表面都可以平面绽开,这些几何体表面内两点间最短距离,就是其平面内绽开图内两点间的线段长。 由于球面不能平面绽开,所以求球面内两点间的球面距离是一个全新的方法,这个最短距离是过这两点大圆的劣弧长。 高考2022文科数学学问难点整理四 考点一:向量的概念、向量的基本定理 【内容解读】了解向量的实际背景,驾驭向量、零向量、平行向量、共线向量、单位向量、相等向量等概念,理解向量的几何表示,驾驭平面对量的基本定理。 留意对向量概念的理解,向量是可以自由移动的,平移后所得向量与原向量相同;两个向量无法比较大小,它们的模可比较大小。 考点二:向量的运算 【内容解读】向量的运算要求驾驭向量的加减法运算,会用平行四边形法则、三角形法则进行向量的加减运算;驾驭实数与向量的积运算,理解两个向量共线的含义,会推断两个向量的平行关系;驾驭向量的数量积的运算,体会平面对量的数量积与向量投影的关系,并理解其几何意义,驾驭数量积的坐标表达式,会进行平面对量积的运算,能运用数量积表示两个向量的夹角,会用向量积推断两个平面对量的垂直关系。 【命题规律】命题形式主要以选择、填空题型出现,难度不大,考查重点为模和向量夹角的定义、夹角公式、向量的坐标运算,有时也会与其它内容相结合。 考点三:定比分点 【内容解读】驾驭线段的定比分点和中点坐标公式,并能娴熟应用,求点分有向线段所成比时,可借助图形来帮助理解。 【命题规律】重点考查定义和公式,主要以选择题或填空题型出现,难度一般。由于向量应用的广泛性,常常也会与三角函数,解析几何一并考查,若出现在解答题中,难度以中档题为主,间或也以难度略高的题目。 考点四:向量与三角函数的综合问题 【内容解读】向量与三角函数的综合问题是高考常常出现的问题,考查了向量的学问,三角函数的学问,达到了高考中试题的覆盖面的要求。 【命题规律】命题以三角函数作为坐标,以向量的坐标运算或向量与解三角形的内容相结合,也有向量与三角函数图象平移结合的问题,属中档偏易题。 考点五:平面对量与函数问题的交汇 【内容解读】平面对量与函数交汇的问题,主要是向量与二次函数结合的问题为主,要留意自变量的取值范围。 【命题规律】命题多以解答题为主,属中档题。 考点六:平面对量在平面几何中的应用 【内容解读】向量的坐标表示事实上就是向量的代数表示.在引入向量的坐标表示后,使向量之间的运算代数化,这样就可以将“形”和“数”紧密地结合在一起.因此,很多平面几何问题中较难解决的问题,都可以转化为大家熟识的代数运算的论证.也就是把平面几何图形放到适当的坐标系中,给予几何图形有关点与平面对量详细的坐标,这样将有关平面几何问题转化为相应的代数运算和向量运算,从而使问题得到解决. 【命题规律】命题多以解答题为主,属中等偏难的试题。 高考2022文科数学学问难点整理第10页 共10页第 10 页 共 10 页第 10 页 共 10 页第 10 页 共 10 页第 10 页 共 10 页第 10 页 共 10 页第 10 页 共 10 页第 10 页 共 10 页第 10 页 共 10 页第 10 页 共 10 页第 10 页 共 10 页