欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022年高中数学参数方程大题 .pdf

    • 资源ID:25478111       资源大小:938.23KB        全文页数:12页
    • 资源格式: PDF        下载积分:4.3金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要4.3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022年高中数学参数方程大题 .pdf

    精品资料欢迎下载参数方程极坐标系解答题1已知曲线C:+=1,直线 l:(t 为参数)()写出曲线C 的参数方程,直线l 的普通方程()过曲线C 上任意一点P 作与 l 夹角为 30 的直线,交l 于点 A,求 |PA|的最大值与最小值考点 :参数方程化成普通方程;直线与圆锥曲线的关系专题 :坐标系和参数方程分析:()联想三角函数的平方关系可取x=2cos 、y=3sin得曲线 C 的参数方程,直接消掉参数t 得直线 l 的普通方程;()设曲线C 上任意一点P(2cos , 3sin ) 由点到直线的距离公式得到P 到直线 l 的距离,除以sin30 进一步得到 |PA|,化积后由三角函数的范围求得|PA|的最大值与最小值解答:解: ()对于曲线C:+=1,可令 x=2cos 、y=3sin ,故曲线 C 的参数方程为, (为参数)对于直线l:,由 得: t=x2,代入 并整理得: 2x+y6=0;()设曲线C 上任意一点P(2cos , 3sin ) P到直线 l 的距离为则,其中 为锐角当 sin( + )=1 时, |PA|取得最大值,最大值为当 sin( + )=1 时, |PA|取得最小值,最小值为点评:本题考查普通方程与参数方程的互化,训练了点到直线的距离公式,体现了数学转化思想方法,是中档题2已知极坐标系的极点在直角坐标系的原点处,极轴与x 轴的正半轴重合,直线l 的极坐标方程为:,曲线 C 的参数方程为:(为参数)(I)写出直线l 的直角坐标方程;()求曲线C 上的点到直线l 的距离的最大值考点 :参数方程化成普通方程专题 :坐标系和参数方程分析:(1)首先,将直线的极坐标方程中消去参数,化为直角坐标方程即可;(2)首先,化简曲线C 的参数方程,然后,根据直线与圆的位置关系进行转化求解解答:解: ( 1)直线l 的极坐标方程为:, (sin cos )=,精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 12 页精品资料欢迎下载,xy+1=0 (2)根据曲线C 的参数方程为:(为参数)得(x 2)2+y2=4,它表示一个以(2,0)为圆心,以2 为半径的圆,圆心到直线的距离为:d=,曲线 C 上的点到直线l 的距离的最大值=点评:本题重点考查了直线的极坐标方程、曲线的参数方程、及其之间的互化等知识,属于中档题3已知曲线C1:(t 为参数),C2:(为参数)(1)化 C1,C2的方程为普通方程,并说明它们分别表示什么曲线;(2)若 C1上的点 P对应的参数为t=,Q 为 C2上的动点,求PQ 中点 M 到直线 C3:(t 为参数)距离的最小值考点 :圆的参数方程;点到直线的距离公式;直线的参数方程专题 :计算题;压轴题;转化思想分析:(1)分别消去两曲线参数方程中的参数得到两曲线的普通方程,即可得到曲线C1表示一个圆;曲线C2表示一个椭圆;(2)把 t 的值代入曲线C1的参数方程得点P 的坐标,然后把直线的参数方程化为普通方程,根据曲线C2的参数方程设出Q 的坐标, 利用中点坐标公式表示出M 的坐标, 利用点到直线的距离公式表示出M 到已知直线的距离,利用两角差的正弦函数公式化简后,利用正弦函数的值域即可得到距离的最小值解答:解: ( 1)把曲线C1:(t 为参数)化为普通方程得:(x+4)2+(y3)2=1,所以此曲线表示的曲线为圆心(4, 3) ,半径 1的圆;把 C2:( 为参数) 化为普通方程得:+=1,所以此曲线方程表述的曲线为中心是坐标原点,焦点在 x 轴上,长半轴为8,短半轴为3 的椭圆;(2)把 t=代入到曲线C1的参数方程得:P(4, 4) ,把直线 C3:(t 为参数)化为普通方程得:x 2y7=0,设 Q 的坐标为Q(8cos ,3sin ) ,故 M( 2+4cos ,2+sin )所以 M 到直线的距离d=, (其中 sin =,cos =)精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 12 页精品资料欢迎下载从而当 cos =,sin =时, d 取得最小值点评:此题考查学生理解并运用直线和圆的参数方程解决数学问题,灵活运用点到直线的距离公式及中点坐标公式化简求值,是一道综合题4在直角坐标系xOy 中,以 O 为极点, x 轴正半轴为极轴建立直角坐标系,圆C 的极坐标方程为,直线 l 的参数方程为(t 为参数),直线 l 和圆 C 交于 A,B 两点, P 是圆 C上不同于 A,B 的任意一点()求圆心的极坐标;()求 PAB 面积的最大值考点 :参数方程化成普通方程;简单曲线的极坐标方程专题 :坐标系和参数方程分析:()由圆C 的极坐标方程为,化为 2=,把代入即可得出(II )把直线的参数方程化为普通方程,利用点到直线的距离公式可得圆心到直线的距离d,再利用弦长公式可得 |AB|=2,利用三角形的面积计算公式即可得出解答:解: ()由圆C 的极坐标方程为,化为 2=,把代入可得:圆C 的普通方程为x2+y22x+2y=0 ,即( x1)2+(y+1)2=2圆心坐标为(1, 1) ,圆心极坐标为;()由直线l 的参数方程(t 为参数),把 t=x 代入 y=1+2t 可得直线l 的普通方程:,圆心到直线l 的距离,|AB|=2=,点 P 直线 AB 距离的最大值为,点评:本题考查了把直线的参数方程化为普通方程、极坐标化为直角坐标方程、点到直线的距离公式、弦长公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题5在平面直角坐标系xoy 中,椭圆的参数方程为为参数)以 o 为极点, x 轴正半轴为极轴建立极坐标系,直线的极坐标方程为求椭圆上点到直线距离的最大值和最小值精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 12 页精品资料欢迎下载考点 :椭圆的参数方程;椭圆的应用专题 :计算题;压轴题分析:由题意椭圆的参数方程为为参数),直线的极坐标方程为将椭圆和直线先化为一般方程坐标,然后再计算椭圆上点到直线距离的最大值和最小值解答:解:将化为普通方程为(4 分)点到直线的距离(6 分)所以椭圆上点到直线距离的最大值为,最小值为 (10 分)点评:此题考查参数方程、极坐标方程与普通方程的区别和联系,两者要会互相转化,根据实际情况选择不同的方程进行求解,这也是每年高考必考的热点问题6在直角坐标系xoy 中,直线 I 的参数方程为(t 为参数),若以 O 为极点, x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为 =cos( +) (1)求直线I 被曲线 C 所截得的弦长;(2)若 M(x,y)是曲线C 上的动点,求x+y 的最大值考点 :参数方程化成普通方程专题 :计算题;直线与圆;坐标系和参数方程分析:(1)将曲线C 化为普通方程,将直线的参数方程化为标准形式,利用弦心距半径半弦长满足的勾股定理,即可求弦长(2)运用圆的参数方程,设出M,再由两角和的正弦公式化简,运用正弦函数的值域即可得到最大值解答:解: ( 1)直线 I 的参数方程为(t 为参数),消去 t,可得, 3x+4y+1=0 ;由于 =cos( +)=() ,即有 2= cos sin ,则有 x2+y2x+y=0 ,其圆心为(,) ,半径为r=,圆心到直线的距离d=,故弦长为2=2=;(2)可设圆的参数方程为:(为参数),则设 M(,) ,精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 12 页精品资料欢迎下载则 x+y=sin() ,由于 R,则 x+y 的最大值为1点评:本题考查参数方程化为标准方程,极坐标方程化为直角坐标方程,考查参数的几何意义及运用,考查学生的计算能力,属于中档题7选修 4 4:参数方程选讲已知平面直角坐标系xOy,以 O 为极点, x 轴的非负半轴为极轴建立极坐标系,P点的极坐标为,曲线 C 的极坐标方程为()写出点P 的直角坐标及曲线C 的普通方程;()若 Q 为 C 上的动点,求PQ 中点 M 到直线 l:(t 为参数)距离的最小值考点:参数方程化成普通方程;简单曲线的极坐标方程专题:坐标系和参数方程分析:(1)利用 x= cos ,y= sin即可得出;(2)利用中点坐标公式、点到直线的距离公式及三角函数的单调性即可得出,解答:解 (1) P 点的极坐标为,=3,=点 P的直角坐标把 2=x2+y2,y= sin代入可得,即曲线 C 的直角坐标方程为(2)曲线 C 的参数方程为(为参数),直线 l 的普通方程为x2y7=0 设,则线段PQ 的中点那么点 M 到直线 l 的距离.,点 M 到直线 l 的最小距离为点评:本题考查了极坐标与直角坐标的互化、中点坐标公式、点到直线的距离公式、两角和差的正弦公式、三角函数的单调性等基础知识与基本技能方法,考查了计算能力,属于中档题8在直角坐标系xOy 中,圆 C 的参数方程(为参数)以 O 为极点, x 轴的非负半轴为极轴建立极坐标系()求圆C 的极坐标方程;精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 12 页精品资料欢迎下载()直线l 的极坐标方程是 (sin +)=3,射线 OM: =与圆 C 的交点为O,P,与直线l 的交点为Q,求线段 PQ 的长考点 :简单曲线的极坐标方程;直线与圆的位置关系专题 :直线与圆分析:(I)圆 C 的参数方程(为参数)消去参数可得: (x1)2+y2=1把 x= cos ,y= sin代入化简即可得到此圆的极坐标方程(II ) 由直线 l 的极坐标方程是(sin +) =3, 射线 OM: = 可得普通方程: 直线 l,射线 OM分别与圆的方程联立解得交点,再利用两点间的距离公式即可得出解答:解: ( I)圆 C 的参数方程(为参数)消去参数可得: (x1)2+y2=1把 x= cos ,y= sin代入化简得: =2cos ,即为此圆的极坐标方程(II )如图所示,由直线l 的极坐标方程是 (sin +)=3,射线 OM : =可得普通方程:直线l,射线 OM联立,解得,即 Q联立,解得或P|PQ|=2点评:本题考查了极坐标化为普通方程、曲线交点与方程联立得到的方程组的解的关系、两点间的距离公式等基础知识与基本方法,属于中档题9在直角坐标系xoy 中,曲线 C1的参数方程为(为参数),以原点 O 为极点, x 轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为 sin( +)=4(1)求曲线C1的普通方程与曲线C2的直角坐标方程;精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 12 页精品资料欢迎下载(2)设 P 为曲线 C1上的动点,求点P到 C2上点的距离的最小值,并求此时点P的坐标考点 :简单曲线的极坐标方程专题 :坐标系和参数方程分析:(1)由条件利用同角三角函数的基本关系把参数方程化为直角坐标方程,利用直角坐标和极坐标的互化公式x= cos 、y= sin ,把极坐标方程化为直角坐标方程(2)求得椭圆上的点到直线 x+y 8=0 的距离为,可得 d 的最小值,以及此时的的值,从而求得点P的坐标解答:解: ( 1)由曲线C1:,可得,两式两边平方相加得:,即曲线 C1的普通方程为:由曲线 C2:得:,即 sin + cos =8,所以 x+y 8=0,即曲线 C2的直角坐标方程为:x+y8=0(2)由( 1)知椭圆 C1与直线 C2无公共点,椭圆上的点到直线 x+y 8=0 的距离为,当时, d 的最小值为,此时点 P 的坐标为点评:本题主要考查把参数方程、极坐标方程化为直角坐标方程的方法,点到直线的距离公式的应用,正弦函数的值域,属于基础题10已知直线l 的参数方程是(t 为参数),圆 C 的极坐标方程为 =2cos( +) ()求圆心C 的直角坐标;()由直线l 上的点向圆C 引切线,求切线长的最小值考点 :简单曲线的极坐标方程专题 :计算题分析:(I)先利用三角函数的和角公式展开圆C 的极坐标方程的右式,再利用直角坐标与极坐标间的关系,即利用 cos =x, sin =y,2=x2+y2,进行代换即得圆C 的直角坐标方程,从而得到圆心C 的直角坐标(II )欲求切线长的最小值,转化为求直线l 上的点到圆心的距离的最小值,故先在直角坐标系中算出直线l上的点到圆心的距离的最小值,再利用直角三角形中边的关系求出切线长的最小值即可解答:解: ( I),圆 C 的直角坐标方程为,即,圆心直角坐标为 (5 分)(II )直线 l 的普通方程为,精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 7 页,共 12 页精品资料欢迎下载圆心 C 到直线 l 距离是,直线 l 上的点向圆C 引的切线长的最小值是(10 分)点评:本题考查点的极坐标和直角坐标的互化,能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化11在直角坐标系xOy 中,以 O 为极点, x 轴正半轴为极轴建立坐标系,直线l 的参数方程为, ( t 为参数),曲线 C1的方程为 ( 4sin )=12,定点 A(6, 0) ,点 P 是曲线 C1上的动点, Q 为 AP 的中点(1)求点 Q 的轨迹 C2的直角坐标方程;(2)直线 l 与直线 C2交于 A,B 两点,若 |AB| 2,求实数a的取值范围考点 :简单曲线的极坐标方程;参数方程化成普通方程专题 :坐标系和参数方程分析:(1)首先,将曲线C1化为直角坐标方程,然后,根据中点坐标公式,建立关系,从而确定点Q 的轨迹 C2的直角坐标方程;(2)首先,将直线方程化为普通方程,然后,根据距离关系,确定取值范围解答:解: (1)根据题意,得曲线 C1的直角坐标方程为:x2+y24y=12,设点 P(x,y ) , Q( x,y) ,根据中点坐标公式,得,代入 x2+y24y=12,得点 Q 的轨迹 C2的直角坐标方程为: (x3)2+(y1)2=4,(2)直线 l 的普通方程为:y=ax,根据题意,得,解得实数a的取值范围为:0,点评:本题重点考查了圆的极坐标方程、直线的参数方程,直线与圆的位置关系等知识,考查比较综合, 属于中档题,解题关键是准确运用直线和圆的特定方程求解精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 8 页,共 12 页精品资料欢迎下载12 在直角坐标系xoy 中以 O 为极点,x 轴正半轴为极轴建立坐标系圆 C1, 直线 C2的极坐标方程分别为 =4sin , cos()=2()求 C1与 C2交点的极坐标;() 设 P 为 C1的圆心, Q 为 C1与 C2交点连线的中点,已知直线 PQ 的参数方程为(t R 为参数),求 a,b 的值考点 :点的极坐标和直角坐标的互化;直线与圆的位置关系;参数方程化成普通方程专题 :压轴题;直线与圆分析:(I)先将圆C1,直线 C2化成直角坐标方程,再联立方程组解出它们交点的直角坐标,最后化成极坐标即可;(II )由( I)得, P与 Q 点的坐标分别为(0,2) , (1,3) ,从而直线PQ 的直角坐标方程为xy+2=0 ,由参数方程可得y=x+1,从而构造关于a,b 的方程组,解得a,b 的值解答:解: ( I)圆 C1,直线 C2的直角坐标方程分别为x2+(y2)2=4,x+y4=0,解得或,C1与 C2交点的极坐标为(4,) (2,) (II )由( I)得, P与 Q 点的坐标分别为(0,2) , (1,3) ,故直线 PQ 的直角坐标方程为xy+2=0,由参数方程可得y=x+1,解得 a= 1,b=2点评:本题主要考查把极坐标方程化为直角坐标方程、把参数方程化为普通方程的方法,方程思想的应用,属于基础题13在直角坐标系xOy 中, l 是过定点P(4, 2)且倾斜角为的直线;在极坐标系(以坐标原点O 为极点,以x 轴非负半轴为极轴,取相同单位长度)中,曲线C 的极坐标方程为 =4cos()写出直线l 的参数方程,并将曲线C 的方程化为直角坐标方程;()若曲线C 与直线相交于不同的两点M、N,求 |PM|+|PN|的取值范围解答:解: ( I)直线 l 的参数方程为(t 为参数)曲线 C 的极坐标方程 =4cos可化为 2=4 cos 把 x= cos ,y= sin代入曲线C 的极坐标方程可得x2+y2=4x,即( x2)2+y2=4(II )把直线 l 的参数方程为( t 为参数)代入圆的方程可得:t2+4(sin +cos )t+4=0曲线 C 与直线相交于不同的两点M、 N, =16(sin +cos )2160,sin cos 0,又 0, ) ,精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 9 页,共 12 页精品资料欢迎下载又 t1+t2=4(sin +cos ) ,t1t2=4|PM|+|PN|=|t1|+|t2|=|t1+t2|=4|sin +cos |=,|PM|+|PN|的取值范围是点评:本题考查了直线的参数方程、圆的极坐标方程、直线与圆相交弦长问题,属于中档题14在直角坐标系xOy 中,直线l 的参数方程为(t 为参数),以原点为极点,x 轴正半轴为极轴建立极坐标系, C 的极坐标方程为 =2sin ()写出 C 的直角坐标方程;() P 为直线 l 上一动点,当P 到圆心 C 的距离最小时,求P 的直角坐标考点 :点的极坐标和直角坐标的互化专题 :坐标系和参数方程分析:(I)由 C 的极坐标方程为 =2sin 化为 2=2,把代入即可得出; (II )设 P,又 C利用两点之间的距离公式可得|PC|=,再利用二次函数的性质即可得出解答:解: (I)由 C 的极坐标方程为 =2sin 2=2,化为 x2+y2=,配方为=3(II )设 P,又 C|PC|= 2,因此当 t=0 时, |PC|取得最小值2此时 P(3,0) 点评:本题考查了极坐标化为直角坐标方程、参数方程的应用、两点之间的距离公式、二次函数的性质,考查了推理能力与计算能力,属于中档题15已知曲线C1的极坐标方程为 =6cos ,曲线 C2的极坐标方程为 =(p R) ,曲线 C1,C2相交于 A, B 两点()把曲线C1,C2的极坐标方程转化为直角坐标方程;()求弦AB 的长度考点 :简单曲线的极坐标方程专题 :计算题分析:()利用直角坐标与极坐标间的关系,即利用 cos =x, sin =y,2=x2+y2,进行代换即得曲线C2及曲线C1的直角坐标方程()利用直角坐标方程的形式,先求出圆心(3,0)到直线的距离,最后结合点到直线的距离公式弦AB 的长度精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 10 页,共 12 页精品资料欢迎下载解答:解: ()曲线C2:(p R)表示直线y=x,曲线 C1: =6cos ,即 2=6 cos所以 x2+y2=6x 即( x3)2+y2=9 ()圆心(3,0)到直线的距离,r=3 所以弦长 AB=弦 AB 的长度点评:本小题主要考查圆和直线的极坐标方程与直角坐标方程的互化,以及利用圆的几何性质计算圆心到直线的距等基本方法,属于基础题16在直角坐标系xOy 中,以 O 为极点, x 轴正半轴为极轴建立坐标系,直线l 的极坐标方程为 sin( +)=,圆 C 的参数方程为, (为参数, r 0)()求圆心C 的极坐标;()当 r 为何值时,圆C 上的点到直线l 的最大距离为3考点 :简单曲线的极坐标方程;直线与圆的位置关系专题 :计算题分析:(1)利用两角差的余弦公式及极坐标与直角坐标的互化公式可得直线l 的普通方程;利用同角三角函数的基本关系,消去 可得曲线 C 的普通方程,得出圆心的直角坐标后再化面极坐标即可(2)由点到直线的距离公式、两角和的正弦公式,及正弦函数的有界性求得点P到直线 l 的距离的最大值,最后列出关于r 的方程即可求出r 值解答:解: ( 1)由 sin( +)=,得 (cos +sin )=1,直线l:x+y1=0由得 C:圆心(,) 圆心 C 的极坐标( 1,) (2)在圆 C:的圆心到直线l 的距离为:圆 C 上的点到直线l 的最大距离为3,r=2精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 11 页,共 12 页精品资料欢迎下载当 r=2时,圆 C 上的点到直线l 的最大距离为3点评:本小题主要考查坐标系与参数方程的相关知识,具体涉及到极坐标方程、参数方程与普通方程的互化,点到直线距离公式、三角变换等内容17选修 44:坐标系与参数方程在直角坐标xOy 中,圆 C1:x2+y2=4,圆 C2: (x2)2+y2=4()在以O 为极点, x 轴正半轴为极轴的极坐标系中,分别写出圆C1, C2的极坐标方程,并求出圆C1,C2的交点坐标(用极坐标表示) ;()求圆C1与 C2的公共弦的参数方程考点 :简单曲线的极坐标方程;直线的参数方程专题 :计算题;压轴题分析:(I)利用,以及 x2+y2=2,直接写出圆C1,C2的极坐标方程,求出圆C1, C2的交点极坐标,然后求出直角坐标(用坐标表示);(II )解法一:求出两个圆的直角坐标,直接写出圆C1与 C2的公共弦的参数方程解法二利用直角坐标与极坐标的关系求出,然后求出圆C1与 C2的公共弦的参数方程解答:解: ( I)由,x2+y2=2,可知圆,的极坐标方程为 =2,圆,即的极坐标方程为 =4cos ,解得: =2,故圆 C1,C2的交点坐标( 2,) , (2,) (II )解法一:由得圆 C1,C2的交点的直角坐标(1,) , (1,) 故圆 C1,C2的公共弦的参数方程为(或圆 C1,C2的公共弦的参数方程为)(解法二)将x=1 代入得 cos =1 从而于是圆 C1,C2的公共弦的参数方程为点评:本题考查简单曲线的极坐标方程,直线的参数方程的求法,极坐标与直角坐标的互化,考查计算能力精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 12 页,共 12 页

    注意事项

    本文(2022年高中数学参数方程大题 .pdf)为本站会员(Q****o)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开