欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    32-1简单的三角恒等变换(1).ppt

    • 资源ID:25483098       资源大小:171.02KB        全文页数:19页
    • 资源格式: PPT        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    32-1简单的三角恒等变换(1).ppt

    3.2 3.2 简单的三角恒等变换简单的三角恒等变换第一课时第一课时问题提出问题提出t57301p21.1.两角和与差及二倍角的三角函数公式两角和与差及二倍角的三角函数公式分别是什么?分别是什么?sin(sin() )sincossincoscossincossin tantan1tantan)(tancos(cos()coscos sinsincoscos sinsin mcos2cos2coscos2 2sinsin2 2 2cos2cos2 21 1 1 12sin2sin2 2; 2tan1tan22tan2tan1tan22tan2tan1tan22tan2tan1tan22tan2tan1tan22tan2tan1tan22tansin2sin22sincos2sincos 2.2.三角函数公式是三角变换的理论依据,三角函数公式是三角变换的理论依据,基本的三角公式包括同角关系公式,诱基本的三角公式包括同角关系公式,诱导公式,和差公式和二倍角公式等导公式,和差公式和二倍角公式等. .有有了这些公式,使得三角变换的内容、思了这些公式,使得三角变换的内容、思路、方法丰富多彩,奥妙无穷,并为培路、方法丰富多彩,奥妙无穷,并为培养我们的推理、运算能力提供了养我们的推理、运算能力提供了很好的平台很好的平台. .在实际应用中,我们不仅在实际应用中,我们不仅要掌握公式的正向和逆向运用,还要要掌握公式的正向和逆向运用,还要了解公式的变式运用,做到活用公式,了解公式的变式运用,做到活用公式,用活公式用活公式. .3.3.代数式变换与三角变换的区别在于:代数式变换与三角变换的区别在于:代数式变换主要是对代数式的结构形式代数式变换主要是对代数式的结构形式进行变换;三角变换一般先寻找三角式进行变换;三角变换一般先寻找三角式包含的各个角之间的联系,并以此为依包含的各个角之间的联系,并以此为依据选择可以联系它们的适当公式进行变据选择可以联系它们的适当公式进行变换,其中有两个变换原理是需要我们了换,其中有两个变换原理是需要我们了解的解的. .探究(一):探究(一):异角和积互化原理异角和积互化原理 思考思考1 1:对于对于sincossincos和和cossincossin,二者相加、相减分别等于什么?二者相加、相减分别等于什么?思考思考2 2:记记sincossincosx x,cossincossiny y,利用什么数学思想可求出,利用什么数学思想可求出x x、y y?x+yx+ysin(+) sin(+) x-yx-ysin(-)sin(-)方程思想方程思想左边是积右边是和差,左边是积右边是和差,从左到右积化和差从左到右积化和差.思考思考3 3:由上述分析可知由上述分析可知1cossi nsi n()si n()2ababab=+-)sin()sin(21cossin这两个等式左右两边的结构有什么特点?这两个等式左右两边的结构有什么特点?从左到右的变换功能是什么?从左到右的变换功能是什么?思考思考4 4令令 , ,并交换等式两边的式子可得什么结论?并交换等式两边的式子可得什么结论?si nsi n2si ncos22qjqjqj+-+=si nsi n2cossi n22qjqjqj+-=思考思考5 5:这两个等式左右两边的结构有什这两个等式左右两边的结构有什么特点?从左到右的变换功能是什么?么特点?从左到右的变换功能是什么?思考思考6 6:参照上述分析,参照上述分析,coscoscoscos,sinsinsinsin分别等于什么?其变换功能分别等于什么?其变换功能如何?如何?1coscoscos()cos()2ababab=+-1si nsi ncos()cos()2ababab= -+-思考思考7 7:coscoscoscos,coscoscoscos分别等于什么?其变换功能如何?分别等于什么?其变换功能如何?coscos2coscos22qjqjqj+-+=coscos2si nsi n22qjqjqj+-= -思考思考8 8:上述关系表明,两个不同的三角上述关系表明,两个不同的三角函数的和(差)与积是可以相互转化的,函数的和(差)与积是可以相互转化的,但转化是有条件的,其中和差化积的转但转化是有条件的,其中和差化积的转化条件是什么?化条件是什么? 两个角的函数同名两个角的函数同名探究(二):探究(二):同角和差合成原理同角和差合成原理思考思考1 1:sin20sin20cos30cos30cos20cos20sin30sin30可合成为哪个三角函数?可合成为哪个三角函数?sin(20sin(20+30+30)=sin50)=sin50思考思考2 2:可分别合成为哪个三角函数?可分别合成为哪个三角函数?13si n20cos20 ,22-oo13cos20si n2022-oosin(20sin(20-60-60) )sin(30sin(30-20-20) )思考思考3 3:可分别合成为哪个三角函数?可分别合成为哪个三角函数?si ncos ,xx-cos3 si nxx+si ncos2 si n()4xxxp-=-cos3 si n2si n()6xxxp+=+思考思考4 4: 可合成为哪个三角函数?可合成为哪个三角函数?3 si n()cos()33xxpp+-+2si n ()36xpp+-思考思考5 5:一般地,一般地, 可可合成为一个什么形式的三角函数?合成为一个什么形式的三角函数?si ncosaxbx+22si ncossi n()axbxabxq+=+tanbaq=其中其中 理论迁移理论迁移例例1 1 化简化简 22si nsi nsi ncossi ncosabaabb-tan(tan()例例2 2 已知已知cosxcosxcoscoscoscos,求证:,求证: 2tantantan222xxaab+-=例例4 4 如图,已知如图,已知OPQOPQ是半径为是半径为1 1,圆心角,圆心角为为6060的扇形,的扇形,C C是扇形弧上的动点,是扇形弧上的动点,ABCDABCD是扇形的内接矩形,记是扇形的内接矩形,记COP=,COP=,求求当角当角取何值时,矩形取何值时,矩形ABCDABCD的面积最大?并求出这个的面积最大?并求出这个最大面积最大面积. .O O A AB BP P Q QC CD D例例3 3 求函数求函数 的周期,的周期,最大值和最小值?最大值和最小值?sin3cosyxx小结作业小结作业1.1.异角和积互化原理与同角和差合成原异角和积互化原理与同角和差合成原理,是三角变换的两个基本原理,具体理,是三角变换的两个基本原理,具体公式不要求记忆,但要明确其变换思想,公式不要求记忆,但要明确其变换思想,会在实际问题中灵活运用会在实际问题中灵活运用. .2.“2.“明确思维起点,把握变换方向,抓住明确思维起点,把握变换方向,抓住内在联系,合理选择公式内在联系,合理选择公式”是三角变换的是三角变换的基本要决基本要决. .sinyAx3.3.对形如对形如 的函数,转的函数,转化为化为 的形式后,可使的形式后,可使问题得到简化,这是一种化归思想问题得到简化,这是一种化归思想. . sincosyabsinyAx作业:作业:P143P143习题习题3.2A3.2A组:组:1(5)(6)(7)(8) 1(5)(6)(7)(8) ,2 2,3 3,4 4,5.5.

    注意事项

    本文(32-1简单的三角恒等变换(1).ppt)为本站会员(仙***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开