欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2021高三数学北师大版(理)一轮教师用书:第8章 第6节 立体几何中的向量方法 .doc

    • 资源ID:2551141       资源大小:811KB        全文页数:18页
    • 资源格式: DOC        下载积分:5金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2021高三数学北师大版(理)一轮教师用书:第8章 第6节 立体几何中的向量方法 .doc

    第六节立体几何中的向量方法最新考纲能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究立体几何问题中的应用1异面直线所成的角设a,b分别是两异面直线l1,l2的方向向量,则a与b的夹角a,bl1与l2所成的角范围0a,b0<关系cosa,bcos |cosa,b|2直线与平面所成的角设直线l的方向向量为a,平面的法向量为n,直线l与平面所成的角为,则sin |cosa,n|.3二面角(1)如图,AB,CD是二面角l的两个面内与棱l垂直的直线,则二面角的大小,(2)如图,n1,n2分别是二面角l的两个半平面,的法向量,则二面角的大小满足|cos |cosn1,n2|,二面角的平面角大小是向量n1与n2的夹角(或其补角)点到平面的距离如图所示,已知AB为平面的一条斜线段,n为平面的法向量,则B到平面的距离为|.一、思考辨析(正确的打“”,错误的打“”)(1)两直线的方向向量所成的角就是两条直线所成的角()(2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角()(3)两个平面的法向量所成的角是这两个平面所成的角()(4)两异面直线夹角的范围是,直线与平面所成角的范围是,二面角的范围是0,()答案(1)(2)(3)(4)二、教材改编1已知向量m,n分别是直线l和平面的方向向量和法向量,若cos m,n,则l与所成的角为()A30B60C120D150A由于cosm,n,所以m,n120,所以直线l与所成的角为30.2已知两平面的法向量分别为m(0,1,0),n(0,1,1),则两平面所成的二面角为()A.B.C.或D.或Cm(0,1,0),n(0,1,1),mn1,|m|1,|n|,cosm,n,m,n.两平面所成的二面角为或,故选C.3.如图所示,在正方体ABCDA1B1C1D1中,已知M,N分别是BD和AD的中点,则B1M与D1N所成角的余弦值为()A. B.C.D.A以D为原点建立空间直角坐标系Dxyz,如图,设AB2,则N(1,0,0),D1(0,0,2),M(1,1,0),B1(2,2,2),(1,1,2),(1,0,2),143,|,|,cos,0,B1M与D1N所成角的余弦值为.故选A.4.如图,正三棱柱(底面是正三角形的直棱柱)ABCA1B1C1的底面边长为2,侧棱长为2,则AC1与侧面ABB1A1所成的角为_如图,以A为原点,以,(AEAB),所在直线分别为x轴、y轴、z轴(如图)建立空间直角坐标系,设D为A1B1的中点,则A(0,0,0),C1(1,2),D(1,0,2),(1,2),(1,0,2)C1AD为AC1与平面ABB1A1所成的角,cosC1AD,又C1AD,C1AD.考点1求异面直线所成的角用向量法求异面直线所成角的一般步骤(1)选择三条两两垂直的直线建立空间直角坐标系(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量(3)利用向量的夹角公式求出向量夹角的余弦值(4)两异面直线所成角的余弦值等于两向量夹角余弦值的绝对值 (2017全国卷)已知直三棱柱ABCA1B1C1中,ABC120,AB2,BCCC11,则异面直线AB1与BC1所成角的余弦值为()A.B.C.D.C在平面ABC内过点B作AB的垂线,以B为原点,以该垂线,BA,BB1所在直线分别为x轴,y轴,z轴建立空间直角坐标系Bxyz,则A(0,2,0),B1(0,0,1),C,C1,(0,2,1),cos,故选C.母题探究1.本例条件换为:“直三棱柱ABCA1B1C1中,ABBCAA1,ABC90,点E,F分别是棱AB,BB1的中点”,则直线EF和BC1所成的角是_60以B为坐标原点,以BC为x轴,BA为y轴,BB1为z轴,建立空间直角坐标系如图所示设ABBCAA12,则C1(2,0,2),E(0,1,0),F(0,0,1),(0,1,1),(2,0,2),2,cos,则EF和BC1所成的角是60.2本例条件换为:“直三棱柱ABCA1B1C1中,底面为等边三角形, AA1AB,N,M分别是A1B1,A1C1的中点”,则AM与BN所成角的余弦值为_如图所示,取AC的中点D,以D为原点,BD,DC,DM所在直线分别为x轴、y轴、z轴,建立空间直角坐标系,不妨设AC2,则A(0,1,0),M(0,0,2), B(,0,0),N,所以(0,1,2),所以cos,.两异面直线所成角的范围是,两向量的夹角的范围是0,当异面直线的方向向量的夹角为锐角或直角时,就是该异面直线的夹角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线的夹角教师备选例题如图,四边形ABCD为菱形,ABC120,E,F是平面ABCD同一侧的两点,BE平面ABCD,DF平面ABCD,BE2DF,AEEC.(1)证明:平面AEC平面AFC;(2)求直线AE与直线CF所成角的余弦值解(1)证明:如图所示,连接BD,设BDACG,连接EG,FG,EF.在菱形ABCD中,不妨设GB1.由ABC120,可得AGGC.由BE平面ABCD,ABBC2,可知AEEC.又AEEC,所以EG,且EGAC.在RtEBG中,可得BE,故DF.在RtFDG中,可得FG.在直角梯形BDFE中,由BD2,BE,DF,可得EF,从而EG2FG2EF2,所以EGFG.又ACFGG,AC,FG平面AFC,所以EG平面AFC.因为EG平面AEC,所以平面AEC平面AFC.(2)如图,以G为坐标原点,分别以GB,GC所在直线为x轴、y轴,|为单位长度,建立空间直角坐标系Gxyz,由(1)可得A(0,0),E(1,0,),F,C(0,0),所以(1,),.故cos,.所以直线AE与直线CF所成角的余弦值为.如图,在四棱锥PABCD中,PA平面ABCD,底面ABCD是菱形,AB2,BAD60.(1)求证:BD平面PAC;(2)若PAAB,求PB与AC所成角的余弦值解(1)证明:因为四边形ABCD是菱形,所以ACBD.因为PA平面ABCD,所以PABD.又因为ACPAA,所以BD平面PAC.(2)设ACBDO.因为BAD60,PAAB2,所以BO1,AOCO.如图,以O为坐标原点,建立空间直角坐标系Oxyz,则P(0,2),A(0,0),B(1,0,0),C(0,0)所以(1,2),(0,2,0)设PB与AC所成角为,则cos .即PB与AC所成角的余弦值为.考点2求直线与平面所成的角利用向量法求线面角的2种方法(1)法一:分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角)(2)法二:通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的角(夹角为钝角时取其补角),取其余角就是斜线和平面所成的角(2019深圳模拟)已知四棱锥PABCD,底面ABCD为菱形,PDPB,H为PC上的点,过AH的平面分别交PB,PD于点M,N,且BD平面AMHN.(1)证明:MNPC;(2)当H为PC的中点,PAPCAB,PA与平面ABCD所成的角为60,求AD与平面AMHN所成角的正弦值解(1)证明:连接AC、BD且ACBDO,连接PO.因为ABCD为菱形,所以BDAC,因为PDPB,所以POBD,因为ACPOO且AC、PO平面PAC,所以BD平面PAC,因为PC平面PAC,所以BDPC,因为BD平面AMHN,且平面AMHN平面PBDMN,所以BDMN,MN平面PAC,所以MNPC.(2)由(1)知BDAC且POBD,因为PAPC,且O为AC的中点,所以POAC,所以PO平面ABCD,所以PA与平面ABCD所成的角为PAO,所以PAO60,所以AOPA,POPA,因为PAAB,所以BOPA.以,分别为x,y,z轴,建立空间直角坐标系,如图所示设PA2,所以O(0,0,0),A(1,0,0),B,C(1,0,0),D,P,H,所以,.设平面AMHN的法向量为n(x,y,z),所以即 令x2,则y0,z2,所以n(2,0,2),设AD与平面AMHN所成角为,所以sin |cosn,|.所以AD与平面AMHN所成角的正弦值为.若求线面角的余弦值,要注意利用平方关系sin2cos21求出其值不要误认为直线的方向向量与平面的法向量所成夹角的余弦值即为所求(2019浙江高考)如图,已知三棱柱ABCA1B1C1,平面A1ACC1平面ABC,ABC90,BAC30,A1AA1CAC,E,F分别是AC,A1B1的中点(1)证明:EFBC;(2)求直线EF与平面A1BC所成角的余弦值解法一:(几何法)(1)连接A1E,因为A1AA1C,E是AC的中点,所以A1EAC.又平面A1ACC1平面ABC,A1E平面A1ACC1,平面A1ACC1平面ABCAC,所以,A1E平面ABC,则A1EBC.又因为A1FAB,ABC90,故BCA1F.所以BC平面A1EF.因此EFBC.(2)取BC中点G,连接EG,GF,则四边形EGFA1是平行四边形由于A1E平面ABC,故A1EEG,所以平行四边形EGFA1为矩形由(1)得BC平面EGFA1,则平面A1BC平面EGFA1,所以EF在平面A1BC上的射影在直线A1G上连接A1G交EF于O,则EOG是直线EF与平面A1BC所成的角(或其补角)不妨设AC4,则在RtA1EG中,A1E2,EG.由于O为A1G的中点,故EOOG,所以cosEOG.因此,直线EF与平面A1BC所成角的余弦值是.法二:(向量法)(1)连接A1E,因为A1AA1C,E是AC的中点,所以A1EAC.又平面A1ACC1平面ABC,A1E平面A1ACC1,平面A1ACC1平面ABCAC,所以A1E平面ABC.如图,以点E为原点,分别以射线EC,EA1为y,z轴的正半轴,建立空间直角坐标系Exyz.不妨设AC4,则A1(0,0,2),B(,1,0),B1(,3,2),F(,2),C(0,2,0)因此,(,1,0)由0,得EFBC.(2)设直线EF与平面A1BC所成角为.由(1)可得(,1,0),(0,2,2)设平面A1BC的法向量为n(x,y,z),由得 取n(1,1),故sin |cos,n|,所以cos ,因此,直线EF与平面A1BC所成的角的余弦值为.考点3求二面角利用向量计算二面角大小的常用方法(1)找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐(钝)二面角(2)找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小提醒:判断二面角的平面角是锐角还是钝角,可结合图形进行(2019全国卷)如图,直四棱柱ABCDA1B1C1D1的底面是菱形,AA14,AB2,BAD60,E,M,N分别是BC,BB1,A1D的中点(1)证明:MN平面C1DE;(2)求二面角AMA1N的正弦值解(1)连接ME,B1CM,E分别为BB1,BC中点,ME为B1BC的中位线,MEB1C且MEB1C,又N为A1D中点,且A1D綊B1C,NDB1C且NDB1C,ME綊ND,四边形MNDE为平行四边形,MNDE.又MN平面C1DE,DE平面C1DE,MN平面C1DE.(2)法一:设ACBDO,A1C1B1D1O1,由直四棱柱性质可知:OO1平面ABCD.四边形ABCD为菱形,ACBD.则以O为原点,可建立如图所示的空间直角坐标系:则A,M,A1,D(0,1,0),N.取AB中点F,连接DF,则F.四边形ABCD为菱形且BAD60,BAD为等边三角形, DFAB.又AA1平面ABCD,DF平面ABCD,DFAA1.DF平面ABB1A1,即DF平面AMA1.为平面AMA1的一个法向量,且.设平面MA1N的法向量n,又,. 令x,则y1,z1 ,n.cos,n,sin,n,二面角AMA1N的正弦值为.法二:由已知可得DEDA.以D为坐标原点,的方向为x轴正方向,建立如图所示的空间直角坐标系Dxyz,则A(2,0,0),A1(2,0,4),M(1,2),N(1,0,2),(0,0,4),(1,2),(1,0,2),(0,0)设m(x,y,z)为平面A1MA的法向量,则即 所以可取m(,1,0)设n(p,q,r)为平面A1MN的法向量,则 即 可取n(2,0,1),于是cosm,n,所以二面角AMA1N的正弦值为.母题探究本例条件不变,求点C到平面C1DE的距离解法一:(几何法)过C作C1E的垂线,垂足为H.由已知可得DEBC,DEC1C,所以DE平面C1CE,故DECH.又DEC1EE,从而CH平面C1DE,故CH的长即为C到平面C1DE的距离,由已知可得CE1,C1C4,所以C1E,故CH.从而点C到平面C1DE的距离为.法二:(等体积法)在菱形ABCD中,E为BC中点,所以DEBC,根据题意有DE,C1E,因为棱柱为直棱柱,所以有DE平面BCC1B1,所以DEEC1,所以SDEC1,设点C到平面C1DE的距离为d,根据题意有VC1CDEVCC1DE,则有d14,解得d,所以点C到平面C1DE的距离为.本例(2)在求解中给出了两种常见的建系方式,建立便捷的空间直角坐标系是求解本例的关键1.如图所示,二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB.已知AB4,AC6,BD8,CD2,则该二面角的大小为_60,|2.|cos,24.cos,.又所求二面角与,互补,所求的二面角为60.2.如图,EA平面ABC ,DB平面ABC,ABC是等边三角形,AC2AE,M是AB的中点(1)求证:CMEM; (2)若直线DM与平面ABC所成角的正切值为2,求二面角BCDE的余弦值解(1)证明:因为ABC是等边三角形,M是AB的中点,所以CMAM.因为EA平面ABC,CM平面ABC,所以CMEA.因为AMEAA,所以CM平面EAM.因为EM平面EAM,所以CMEM.(2)以点M为坐标原点,MC所在直线为x轴,MB所在直线为y轴,过M且与直线BD平行的直线为z轴,建立空间直角坐标系Mxyz,如图所示因为DB平面ABC,所以DMB为直线DM与平面ABC所成的角,所以tanDMB2,即BD2MB,所以BDAC.不妨设AC2,又AC2AE,则CM,AE1.故B(0,1,0),C(,0,0),D(0,1,2),E(0,1,1)所以(,1,0),(0,0,2),(,1,1),(,1,2)设平面BCD与平面CDE的一个法向量分别为m(x1,y1,z1),n(x2,y2,z2),由 得令x11,得y1,所以m(1,0)由 得令x21,得y2,z2.所以n.所以cosm,n0.所以二面角BCDE的余弦值为0.

    注意事项

    本文(2021高三数学北师大版(理)一轮教师用书:第8章 第6节 立体几何中的向量方法 .doc)为本站会员(荣***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开