2021高三数学北师大版(理)一轮课后限时集训:60 圆锥曲线中的证明、探索性问题 .doc
-
资源ID:2551296
资源大小:78KB
全文页数:4页
- 资源格式: DOC
下载积分:5金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021高三数学北师大版(理)一轮课后限时集训:60 圆锥曲线中的证明、探索性问题 .doc
圆锥曲线中的证明、探索性问题建议用时:45分钟1(2019长沙模拟)已知椭圆C:1(a>b>0)的左、右焦点分别为F1,F2,且点F1到椭圆C上任意一点的最大距离为3,椭圆C的离心率为.(1)求椭圆C的标准方程;(2)是否存在斜率为1的直线l与以线段F1F2为直径的圆相交于A,B两点,与椭圆相交于C,D,且?若存在,求出直线l的方程;若不存在,说明理由解(1)根据题意,设F1,F2的坐标分别为(c,0),(c,0),由题意可得 解得a2,c1,则b2a2c23,故椭圆C的标准方程为1.(2)假设存在斜率为1的直线l,设为yxm,由(1)知F1,F2的坐标分别为(1,0),(1,0),所以以线段F1F2为直径的圆为x2y21,由题意知圆心(0,0)到直线l的距离d<1,得|m|<.|AB|22,联立得 消去y,得7x28mx4m2120,由题意得(8m)247(4m212)33648m248(7m2)>0,解得m2<7.设C(x1,y1),D(x2,y2),则x1x2,x1x2,|CD|x1x2|AB|,解得m2<7,得m.即存在符合条件的直线l,其方程为yx.2(2019全国卷)已知曲线C:y,D为直线y上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点;(2)若以E为圆心的圆与直线AB相切,且切点为线段AB的中点,求四边形ADBE的面积解(1)证明:设D,A(x1,y1),则x2y1.由于yx,所以切线DA的斜率为x1,故x1.整理得2tx12y110.设B(x2,y2),同理可得2tx22y210.故直线AB的方程为2tx2y10.所以直线AB过定点.(2)由(1)得直线AB的方程为ytx.由可得x22tx10.于是x1x22t,x1x21,y1y2t(x1x2)12t21,|AB|x1x2|2(t21)设d1,d2分别为点D,E到直线AB的距离,则d1,d2.因此,四边形ADBE的面积S|AB|(d1d2)(t23).设M为线段AB的中点,则M.由于,而(t,t22),与向量(1,t)平行,所以t(t22)t0.解得t0或t1.当t0时,S3;当t1时,S4.因此,四边形ADBE的面积为3或4.3已知椭圆E的中心在坐标原点,焦点在坐标轴上,且经过A(2,0),B(2,0),C三点(1)求椭圆E的方程;(2)若直线l:yk(x1)(k0)与椭圆E交于M,N两点,证明直线AM与直线BN的交点在直线x4上解(1)设椭圆E的方程为mx2ny21(m>0,n>0),将A(2,0),B(2,0),C代入椭圆E的方程,得解得椭圆E的方程为1.(2)证明:将直线l:yk(x1)代入椭圆方程1并整理,得(34k2)x28k2x4(k23)0.设直线l与椭圆E的交点M(x1,y1),N(x2,y2),由根与系数的关系,得x1x2,x1x2.消去k2,得2x1x25(x1x2)8.直线AM的方程为y(x2),即y(x2)直线BN的方程为y(x2),即y(x2)由直线AM与直线BN的方程消去y,得x4.直线AM与直线BN的交点在直线x4上