2022年高三数学必记知识点分析.docx
2022年高三数学必记知识点分析 主动的人在每一次忧患中都看到一个机会,而消极的人则在每个机会都看到某种忧患,. 勤劳一日,可得一夜安眠;勤劳一生,可得华蜜长眠。以下是我给大家整理的高三数学必记学问点分析,希望能助你一臂之力! 高三数学必记学问点分析1 a(1)=a,a(n)为公差为r的等差数列 通项公式: a(n)=a(n-1)+r=a(n-2)+2r=.=an-(n-1)+(n-1)r=a(1)+(n-1)r=a+(n-1)r. 可用归纳法证明。 n=1时,a(1)=a+(1-1)r=a。成立。 假设n=k时,等差数列的通项公式成立。a(k)=a+(k-1)r 则,n=k+1时,a(k+1)=a(k)+r=a+(k-1)r+r=a+(k+1)-1r. 通项公式也成立。 因此,由归纳法知,等差数列的通项公式是正确的。 求和公式: S(n)=a(1)+a(2)+.+a(n) =a+(a+r)+.+a+(n-1)r =na+r1+2+.+(n-1) =na+n(n-1)r/2 同样,可用归纳法证明求和公式。 a(1)=a,a(n)为公比为r(r不等于0)的等比数列 通项公式: a(n)=a(n-1)r=a(n-2)r2=.=an-(n-1)r(n-1)=a(1)r(n-1)=ar(n-1). 可用归纳法证明等比数列的通项公式。 求和公式: S(n)=a(1)+a(2)+.+a(n) =a+ar+.+ar(n-1) =a1+r+.+r(n-1) r不等于1时, S(n)=a1-rn/1-r r=1时, S(n)=na. 同样,可用归纳法证明求和公式。 高三数学必记学问点分析2 1.数列的定义、分类与通项公式 (1)数列的定义: 数列:根据肯定依次排列的一列数. 数列的项:数列中的每一个数. (2)数列的分类: 分类标准类型满意条件 项数有穷数列项数有限 无穷数列项数无限 项与项间的大小关系递增数列an+1an其中nN_ 递减数列an+1an p= 常数列an+1=an (3)数列的通项公式: 假如数列an的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式. 2.数列的递推公式 假如已知数列an的首项(或前几项),且任一项an与它的前一项an-1(n2)(或前几项)间的关系可用一个公式来表示,那么这个公式叫数列的递推公式. 3.对数列概念的理解 (1)数列是按肯定“依次”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列依次有关,这有别于集合中元素的无序性.因此,若组成两个数列的数相同而排列次序不同,那么它们就是不同的两个数列. (2)数列中的数可以重复出现,而集合中的元素不能重复出现,这也是数列与数集的区分. 4.数列的函数特征 数列是一个定义域为正整数集N_(或它的有限子集1,2,3,n)的特别函数,数列的通项公式也就是相应的函数解析式,即f(n)=an(nN_). 高三数学必记学问点分析3 立体几何初步 (1)棱柱: 定义:有两个面相互平行,其余各面都是四边形,且每相邻两个四边形的公共边都相互平行,由这些面所围成的几何体。 分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。 表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱 几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。 (2)棱锥 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体 分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等 表示:用各顶点字母,如五棱锥 几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相像比等于顶点到截面距离与高的比的平方。 (3)棱台: 定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分 分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等 表示:用各顶点字母,如五棱台 几何特征:上下底面是相像的平行多边形侧面是梯形侧棱交于原棱锥的顶点 (4)圆柱: 定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体 几何特征:底面是全等的圆;母线与轴平行;轴与底面圆的半径垂直;侧面绽开图是一个矩形。 (5)圆锥: 定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体 几何特征:底面是一个圆;母线交于圆锥的顶点;侧面绽开图是一个扇形。 (6)圆台: 定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分 几何特征:上下底面是两个圆;侧面母线交于原圆锥的顶点;侧面绽开图是一个弓形。 (7)球体: 定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体 几何特征:球的截面是圆;球面上随意一点到球心的距离等于半径。 高三数学必记学问点分析第6页 共6页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页