欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022年椭圆双曲线抛物线知识总结 .pdf

    • 资源ID:25554746       资源大小:236KB        全文页数:8页
    • 资源格式: PDF        下载积分:4.3金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要4.3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022年椭圆双曲线抛物线知识总结 .pdf

    学习必备欢迎下载一椭圆标准方程(焦点在x轴))0(12222babyax(焦点在y轴))0(12222babxay定义第一定义:平面内与两个定点1F,2F的距离的和等于定长(定长大于两定点间的距离)的点的轨迹叫做椭圆,这两个定点叫焦点,两定点间距离焦距。aMFMFM221212FFa? 第二定义:平面内一个动点到一个定点的距离和它到一条定直线的距离的比是小于1 的正常数时,这个动点的轨迹叫椭圆,定点是椭圆的焦点,定直线是椭圆的准线。范围xaybxbya顶点坐标)0 ,( a(0,)b),0(a(,0)b对 称 轴x轴,y轴;长轴长为a2,短轴长为b2M1F2FxyMM1F2FxyMM1F2FxyOM1F2FxyO精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 8 页学习必备欢迎下载对称中心原点(0,0)O焦点坐标1( ,0)F c2(,0)Fc1(0, )Fc2(0,)Fc焦点在长轴上,22cab;焦距:122F Fc离 心 率ace(01e) ,abaace22222,e越大椭圆越扁,e越小椭圆越圆。准线方程cax2cay2准线垂直于长轴,且在椭圆外;两准线间的距离:ca22顶点到准线的距离顶点1A(2A)到准线1l(2l)的距离为aca2顶点1A(2A)到准线2l(1l)的距离为aca2焦点到准线的距离焦点1F(2F)到准线1l(2l)的距离为cca2焦点1F(2F)到准线2l(1l)的距离为cca2椭圆上到焦点的最大(小)距离最大距离为:ac最小距离为:ac相关应用题:远日距离ac近日距离ac椭圆的参数方程cossinxayb(为参数)cossinxbya(为参数)精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 8 页学习必备欢迎下载椭圆上的点到给定直线的距离利用参数方程简便:椭圆cossinxayb(为参数)上一点到直线0AxByC的距离为:22|cossin|AaBbCdAB直线和椭圆的位置椭圆12222byax与直线ykxb的位置关系:利用22221xyabykxb转化为一元二次方程用判别式确定。相交弦 AB 的弦长2212121()4ABkxxx x通径:21AByy过椭圆上一点的切线12020byyaxx利用导数00221y yx xab利用导数精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 8 页学习必备欢迎下载二双曲线双曲线标准方程(焦点在x轴))0,0( 12222babyax标准方程(焦点在y轴))0,0( 12222babxay定义第一定义:平面内与两个定点1F,2F的距离的差的绝对值是常数(小于12F F)的点的轨迹叫双曲线。这两个定点叫做双曲线的焦点,两焦点的距离叫焦距。aMFMFM221212FFa第二定义:平面内与一个定点F和一条定直线l的距离的比是常数e,当1e时,动点的轨迹是双曲线。定点F叫做双曲线的焦点,定直线叫做双曲线的准线,常数e(1e)叫做双曲线的离心率。范围xa,yRya,xR对称轴x轴 ,y轴;实轴长为2a, 虚轴长为2b对称中心原点(0,0)O焦点坐标1(,0)Fc2( ,0)Fc1(0,)Fc2(0, )FcxyP1F2FxyPxyP1F2FxyxyP1F2FxyxyP1F2FxyP精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 8 页学习必备欢迎下载焦点在实轴上,22cab;焦距:122F Fc顶点坐标(a,0) (a,0) (0, a,) (0,a) 离心率eace(1) 准线方程cax2cay2准线垂直于实轴且在两顶点的内侧;两准线间的距离:ca22顶点到准线的距离顶点1A(2A)到准线1l(2l)的距离为caa2顶点1A(2A)到准线2l(1l)的距离为aca2焦点到准线的距离焦点1F(2F)到准线1l(2l)的距离为cac2焦点1F(2F)到准线2l(1l)的距离为cca2渐近线方程xaby(实虚) yabx(实虚) 共渐近线的双曲线系方程kbyax2222(0k)kbxay2222(0k)直线和双曲线的位置双曲线12222byax与直线ykxb的位置关系:利用22221xyabykxb转化为一元二次方程用判别式确定。二次方程二次项系数为零直线与渐近线平行。相交弦 AB 的弦长2212121()4ABkxxx x通径:21AByy过双曲线上一点的切线12020byyaxx或利用导数00221y yx xab或利用导数精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 8 页学习必备欢迎下载三抛物线抛物线)0(22ppxy)0(22ppxy)0(22ppyx)0(22ppyx定义平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线,点F叫做抛物线的焦点,直线l叫做抛物线的准线。MFM=点 M 到直线l的距离 范围0,xyR0,xyR,0 xR y,0 xR y对称性关于x轴对称关于y轴对称焦点(2p,0) (2p,0) (0,2p) (0,2p) 焦点在对称轴上顶点(0,0)O离心率e=1 准线方程2px2px2py2py准线与焦点位于顶点两侧且到顶点的距离相等。顶点到准线的距离2p焦点到准线的距离px y O l F x y O l F l F x y O x y O l F 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 8 页学习必备欢迎下载焦点弦的几条性质设直线过焦点F与抛物线ppxy(220) 交于11,A x y,22,B xy则: (1)21xx=42p( 2)221pyy( 3)通径长:2p( 4)焦点弦长12ABxxp直线与抛物线的位置抛物线pxy22与直线ykxb的位置关系:利用22ykxbypx转化为一元二次方程用判别式确定。切线方程00()y yp xx00()y yp xx00()x xp yy00()x xp yyox 22,B xyFy11,A x y精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 7 页,共 8 页学习必备欢迎下载四椭圆、双曲线及抛物线的性质对比(焦点在 x 轴上 ) 名称椭圆双曲线抛物线定义|PF1|+|PF2|=2a (2a|F1F2|) |PF1|-|PF2| =2a(2ab0) 12222byax(a0,b0) y2=2px (p0) 图象几何性质范围byax,ax0 x顶点),0(),0 ,(ba)0,( a(0,0)对称性关于 x 轴, y 轴和原点对称关于 x 轴对称焦点(c,0 ))0 ,2(p轴长轴长 2a, 短轴长 2b 实轴长 2a,虚轴长 2b准线cax22px通径abAB22pAB2渐近线xaby精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 8 页,共 8 页

    注意事项

    本文(2022年椭圆双曲线抛物线知识总结 .pdf)为本站会员(H****o)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开