(整理版)元素与集合的关系.doc
1. 元素与集合的关系,.2.德摩根公式 .3.包含关系4.容斥原理. 5集合的子集个数共有 个;真子集有1个;非空子集有 1个;非空的真子集有2个.6.二次函数的解析式的三种形式(1)一般式;(2)顶点式;(3)零点式.常有以下转化形式.在上有且只有一个实根,与不等价,前者是后者的一个必要而不是充分条件.特别地, 方程有且只有一个实根在内,等价于,或且,或且.9.闭区间上的二次函数的最值 二次函数在闭区间上的最值只能在处及区间的两端点处取得,具体如下:(1)当a>0时,假设,那么;,.(2)当a<0时,假设,那么,假设,那么,.10.一元二次方程的实根分布依据:假设,那么方程在区间内至少有一个实根 . 设,那么1方程在区间内有根的充要条件为或;2方程在区间内有根的充要条件为或或或;3方程在区间内有根的充要条件为或 .(1)在给定区间的子区间形如,不同上含参数的二次不等式(为参数)恒成立的充要条件是.(2)在给定区间的子区间上含参数的二次不等式(为参数)恒成立的充要条件是.(3)恒成立的充要条件是或.12.真值表 非或且真真假真真真假假真假假真真真假假假真假假 13.常见结论的否认形式原结论反设词原结论反设词是不是至少有一个一个也没有都是不都是至多有一个至少有两个大于不大于至少有个至多有个小于不小于至多有个至少有个对所有,成立存在某,不成立或且对任何,不成立存在某,成立且或14假设那么假设那么互互互为为互否否逆逆否 否假设非那么非互逆假设非那么非15.充要条件 1充分条件:假设,那么是充分条件.2必要条件:假设,那么是必要条件.3充要条件:假设,且,那么是充要条件.注:如果甲是乙的充分条件,那么乙是甲的必要条件;反之亦然.16.函数的单调性(1)设那么上是增函数;上是减函数.(2)设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数.和都是减函数,那么在公共定义域内,和函数也是减函数; 如果函数和在其对应的定义域上都是减函数,那么复合函数是增函数.18奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y轴对称,那么这个函数是偶函数是偶函数,那么;假设函数是偶函数,那么.(),恒成立,那么函数的对称轴是函数;两个函数与 的图象关于直线对称.,那么函数的图象关于点对称; 假设,那么函数为周期为的周期函数.22多项式函数的奇偶性多项式函数是奇函数的偶次项(即奇数项)的系数全为零.多项式函数是偶函数的奇次项(即偶数项)的系数全为零.23.函数的图象的对称性(1)函数的图象关于直线对称.(2)函数的图象关于直线对称.24.两个函数图象的对称性(1)函数与函数的图象关于直线(即轴)对称.(2)函数与函数的图象关于直线对称.(3)函数和的图象关于直线y=x对称.的图象右移、上移个,得到函数的图象;假设将曲线的图象右移、上移个,得到曲线的图象.26互为反函数的两个函数的关系.存在反函数,那么其反函数为,并不是,而函数是的反函数.28.几个常见的函数方程 (1)正比例函数,.(2)指数函数,.(3)对数函数,.(4)幂函数,.(5)余弦函数,正弦函数,. 29.几个函数方程的周期(约定a>0)1,那么的周期T=a;2,或,或,或,那么的周期T=2a;(3),那么的周期T=3a;(4)且,那么的周期T=4a;(5),那么的周期T=5a;(6),那么的周期T=6a.30.分数指数幂 (1),且.(2),且.31根式的性质1.2当为奇数时,;当为偶数时,.32有理指数幂的运算性质(1) .(2) .(3).注: 假设a0,p是一个无理数,那么ap表示一个确定的实数上述有理指数幂的运算性质,对于无理数指数幂都适用. .34.对数的换底公式 (,且,且, ).推论 (,且,且, ).35对数的四那么运算法那么假设a0,a1,M0,N0,那么(1);(2) ;(3).函数,记.假设的定义域为,那么,且;假设的值域为,那么,且.对于的情形,需要单独检验.37. 对数换底不等式及其推广 假设,那么函数 (1)当时,在和上为增函数., (2)当时,在和上为减函数.推论:设,且,那么1.2.38. 平均增长率的问题如果原来产值的根底数为N,平均增长率为,那么对于时间的总产值,有.39.数列的同项公式与前n项的和的关系( 数列的前n项的和为).40.等差数列的通项公式;其前n项和公式为.41.等比数列的通项公式;其前n项的和公式为或.42.等比差数列:的通项公式为;其前n项和公式为.43.分期付款(按揭贷款) 每次还款元(贷款元,次还清,每期利率为).)来源:高考资源网版权所有:高考资源网( k s 5 u )