欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    中考数学解题方法及提分突破训练:配方法专题(含解析).doc

    • 资源ID:25741709       资源大小:173.44KB        全文页数:8页
    • 资源格式: DOC        下载积分:4金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要4金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    中考数学解题方法及提分突破训练:配方法专题(含解析).doc

    解题方法及提分突破训练:配方法专题把代数式通过凑配等手段,得到完全平方式,再运用完全平方式是非负数这一性质达到增加问题的条件的目的,这种解题方法叫配方法 配方法的作用在于改变代数式的原有结构,是求解变形的一种手段;配方法的实质在于改变式子的非负性,是挖掘隐含条件的有力工具,配方法在代数式的化简求值、解方程、解最值问题、讨论不等关系等方面有广泛的应用 运用配方法解题的关键是恰当的“凑配”,应具有整体把握题设条件的能力,即善于将某项拆开又重新分配组合,得到完全平方式一 真题链接1. (2011湖北荆州,3,3分)将代数式x2+4x-1化成(x+p)2+q的形式()A、(x-2)2+3 B、(x+2)2-4 C、(x+2)2-5 D、(x+2)2+42.(2011辽宁本溪,4,3分)一元二次方程的根( )ABCD3. (2011甘肃兰州,10,4分)用配方法解方程时,原方程应变形为( )ABCD4. (2011江苏南京,19,6分)解方程x24x+1=0 二 名词释义把一个式子或一个式子的某一部分化成完全平方式或几个完全平方式的和、差形式,这种方法叫“配方法”“直接开平方法”告诉我们根据完全平方公式可以将一元二次方程化为形如的形式后求解,这就自然而然地导出了另一种解一元二次方程的解法“配方法”它的理论依据是完全平方公式例 解方程解:方程两边都除以2,得,移项,得,配方,得,即开方,得通过本例可以归纳出用“配方法”解一元二次方程的一般步骤:1方程两边同除以二次项系数,化二次项系数为1;2移项,使方程左边为二次项和一次项,右边为常数项;3配方,方程两边都加上一次项系数一半的平方,把原方程化为的形式;4若,用“直接开平方法”解出;若,则原方程无实数根即原方程无解“配方法”是一种重要的数学方法,它不仅可应用于解一元二次方程,而且在数学的其它领域中也有着广泛的应用 三 典题示例1配方法在确定二次根式中字母的取值范围的应用在求二次根式中的字母的取值范围时,经常可以借助配方法,通过平方项是非负数的性质而求解。例1、求二次根式中字母的取值范围分析:根据二次根式的定义,必须被开方数大于等于零,再观察被开方数可以发现可以利用配方法求得。解:因为无论取何值,都有。所以的取值范围是全体实数。点评:经过配方,观察被开方数,然后利用被开方数必须大于等于零求得所需要的解。2配方法在化简二次根式中的应用在二次根式的化简中,也经常使用配方法。例2、化简分析:题中含有两个根号,化简比较困难,但根据题目的结构特征,可以发现可以写成,从而使题目得到化简。解:点评:的题型,一般可以转化为(其中)来化简。3配方法在证明代数式的值为正数、负数等方面的应用在证明代数式的值为正数或负数,配方法也是一种重要的方法。例3、不管取什么实数,的值一定是个负数,请说明理由。分析:本题主要考查利用配方法说明代数式的值恒小于0,说明一个二次三项式恒小于0的方法是通过配方将二次三项式化成“+负数”的形式。解:,。因此,无论x取什么实数,的值是个负数。点评:证明一个二次三项式恒小于0的方法是通过配方将二次三项式化成“+负数”的形式来证明。例4、不管x取什么实数,的值一定是一个正数,你能说明理由吗?分析:要证一定是一个正数,只要把它化为“+正数”的形式即可。解:,因此,不管x取什么实数,的值一定是个正数。点评:证明一个二次三项式恒大于0的方法是通过配方将二次三项式化成 “+正数”的形式来证明。4配方法在解某些二元二次方程中的应用解二元二次方程,在课程标准中不属于考试内容,但有些问题,还是可以利用我们所学的方法得以解决。例5、解方程。分析:本题看上去是一个二元二次方程的问题,实质上它是一个非负数问题。解:由整理为,。点评:把方程转化为方程组问题,把生疏问题转化为熟悉问题,体现了数学的转化思想,正是我们学习数学的真正目的。5配方法在求最大值、最小值中的应用在代数式求最值中,利用配方法求最值是一种重要的方法。可以使我们很跨求出所要求的最值。例6、若为任意实数,求的最小值。分析:求的最小值,可以先将它化成,根据,求得它的最小值为3。解:,因此,的最小值为3。点评:配方法是求一元二次方程根的一种方法,也是推导求根公式的工具,同时也是求二次三项式最值的一种常用方法。例7、若为任意实数,求的最大值。分析:求最大值,可以先将它化成,然后根据,求得它的最大值为9。解:,因此有最大值为9。点评:求二次三项式的最大值或最小值,可以先将它们化成的形式,然后再判断,当时,它有最小值;当时,它有最大值。6配方法在一元二次方程根的判别式中的应用配方法是求一元二次方程根的一种方法,也是推导求根公式的工具,并且也是解决其他问题的方法,其用途相当广泛。在一元二次方程根的判别式中也经常要应用到配方法。例8、证明:对于任何实数,关于的方程都有两个不相等的实数根。分析:由于方程中含有字母系数,而要证明的是方程有两个不相等的实数根,只需证明判别式恒大于零即可。解:, ,即。方程有两个不相等的实数根。点评:利用判别式证明方程根的情况是一种常见的题型,其实质上判断判别式的正负,一般都可以利用配方法解决。例9、试判断关于的方程的根的情况。分析:由于方程中含有字母系数,要判别方程根的情况,实质上是要判断判别式的正负。解: ,方程没有实数根。点评:要判断方程根的情况,其实质上判断判别式的正负,而判断判别式的正负,最常用的方法就是配方法。7配方法在恒等变形中的应用配方法在等式的恒等变形中也经常用到,特别是含有多个二次式时,经常把他们分别配方,转变为平方式。然后再进行解决。例10、已知又知、为三角形的三条边,求证:该三角形是等边三角形。分析:题中分别含有、的二次式,提醒我们不妨利用配方法进行解答。证明:,。三角形是等边三角形。点评:配方法在等式恒等变形中的应用,经常会让我们收到意想不到的效果。四 巩固强化1.若代数式,则的值()一定是负数一定是正数一定不是负数一定不是正数2分解因式:3若实数满足,则的值是()4.多项式的最小值是()15证明方程没有实数根6. (2011清远,18,5分)解方程:x24x107. (2011江苏无锡,20,8分)(1)解方程:x2+4x2=0; 五 参考答案真题链接答案:1.考点:配方法的应用专题:配方法分析:根据配方法,若二次项系数为1,则常数项是一次项系数的一半的平方,若二次项系数不为1,则可先提取二次项系数,将其化为1后再计算解答:解:x2+4x-1=x2+4x+4-4-1=x+22-5,故选C点评:本题考查了学生的应用能力,解题时要注意配方法的步骤,注意在变形的过程中不要改变式子的值,难度适中2.考点:解一元二次方程-配方法。专题:计算题。分析:运用配方法,将原方程左边写出完全平方式即可解答:解:原方程左边配方,得,故选D点评:此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数3.考点:解一元二次方程-配方法分析:配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方解答:解:由原方程移项,得x2-2x=5,方程的两边同时加上一次项系数-2的一半的平方1,得x2-2x+1=6(x-1)2=6故选C点评:此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数4.考点:解一元二次方程-配方法;解一元二次方程-公式法。分析:将原方程转化为完全平方的形式,利用配方法解答或利用公式法解答解答:解:(1)移项得,x24x=1,配方得,x24x+4=1+4,(x2)2=3,由此可得x2=±,x1=2+,x2=2;(2)a=1,B=4,c=1B24ac=(4)24×1×1=120x=2±,x1=2+,x2=2点评:此题考查了解一元二次方程,解题时要注意解题步骤的准确应用(1)选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数(2)选择公式法解一元二次方程时,找准a、B、c的值是关键巩固强化答案1.解:(作差法)故选说明:本例是“配方法”在比较大小中的应用,通过作差法最后拆项、配成完全平方,使此差大于零而比较出大小.2.解:说明:这是配方法在因式分解中的应用,通过添项、配成完全平方式,进而运用平方差公式分解因式3.解:对已知等式配方,得,故选说明:本例是配方法在求值中的应用,将原等式左边配成完全平方式后,再运用非负数的性质求出待定字母的取值4.解:故选说明:此例是“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值5.证明:,即对所有实数,方程左边的代数式的值均不等于,因此,原方程没有实数根6.考点:解一元二次方程-配方法.专题:配方法.分析:配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方解答:解:x24x10,x24x1,x24x+41+4,(x2)25,x2±,x12+,x22点评:此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数7.考点:解一元二次方程-配方法;解一元一次不等式组。专题:计算题。分析:(1)利用配方法解方程,在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数4的一半的平方点评:此题主要考查了配方法解一元二次方程和解一元一次不等式,解题时要注意解题步骤的准确应用,配方法的一般步骤:把常数项移到等号的右边;把二次项的系数化为1;等式两边同时加上一次项系数一半的平方;解不等式组,求其解集时根据:大大取大,小小取小,大小小大取中,大大小小取不着,准确写出解集

    注意事项

    本文(中考数学解题方法及提分突破训练:配方法专题(含解析).doc)为本站会员(模**)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开