驱动桥设计说明书介绍.docx
驱动桥设计说明书介绍.docx 汽车设计课程设计 轻型货车驱动桥设计 姓名 :黄华明 学号 : 专业班级 :机英 123 指导教师 :王淑芬 题目: 1.整车性能参数: 驱动形式 6x2 后轮; 轴距 3800mm; 轮距前 / 后 1750/1586mm; 整备质量 4310kg ; 额定载质量 5000kg ; 空载时前轴分配负荷45%,满载时前轴分配负荷26%; 前悬 / 后悬 1270/1915mm; 最高车速 110km/h ; 最大爬坡度35%; 长、宽、高6985 、 2330、 2350; 发动机型号 YC4E140-20 ; 最大功率 3000rpm ; 最大转矩380N·m/12001400rpm; 变速器传动比; 倒挡; 轮胎规格; 离地间隙 >280mm。 2.具体设计任务: 1)查阅相关资料,根据其发动机和变速箱的参数、汽车动力性的要求,确定驱动桥上主减速器的减速形式,对驱动桥总体进行方案设计和结构设计。 2)校核满载时的驱动力,对汽车的动力性进行验算。 3)根据设计参数对主要零部件进行设计与强度计算。 4)绘制所有零件图和装配图。 5)完成 6 千字的设计说明书。 第 1 章驱动桥的总体方案确定 驱动桥的结构和种类和设计要求 1.1.1汽车车桥的种类 汽车的驱动桥与从动桥统称为车桥,车桥通过悬架与车架(或承载式车身)相连,它的两端安装车轮,其功用是传递车架(或承载式车身)于车轮之间各方向的作用力及其力矩。 根据悬架结构的不同,车桥分为整体式和断开式两种。当采用非独立悬架时,车 桥中部是刚性的实心或空心梁,这种车桥即为整体式车桥;断开式车桥为活动关节式 结构,与独立悬架配用。在绝大多数的载货汽车和少数轿车上,采用的是整体式非断 开式。断开式驱动桥两侧车轮可独立相对于车厢上下摆动。 根据车桥上车轮的作用,车桥又可分为转向桥、驱动桥、转向驱动桥和支持桥四 种类型。其中,转向桥和支持桥都属于从动桥,一般货车多以前桥为转向桥,而后桥 或中后两桥为驱动桥。 1.1.2驱动桥的种类 驱动桥位于传动系末端,其基本功用首先是增扭、降速,改变转矩的传递方向, 即增大由传动轴或直接从变速器传来的转矩,并合理的分配给左、右驱动车轮,其次,驱动桥还要承受作用于路面和车架或车厢之间的垂直力、纵向力和横向力,以及制动力矩和反作用力矩。 驱动桥分为断开式和非断开式两种。驱动桥的结构型式与驱动车轮的悬挂型式密 切相关。当驱动车轮采用非独立悬挂时,例如在绝大多数的载货汽车和部分小轿车上, 都是采用非断开式驱动桥,其桥壳是一根支撑在左右驱动车轮上的刚性空心梁,主减 速器、差速器和半轴等所有的传动件都装在其中;当驱动车轮采用独立悬挂时,则配 以断开式驱动桥。 1.1.3驱动桥结构组成 在多数汽车中,驱动桥包括主减速器、差速器、驱动车轮的传动装置(半轴)及 桥壳等部件如图所示。 123456 1轮毂 2 半轴3钢板弹簧座4主减速器从动锥齿轮5主减速器主动锥齿轮6差速器总成 图驱动桥 1.1.4驱动桥设计要求 1、选择适当的主减速比,以保证汽车在给定的条件下具有最佳的动力性和燃油经济性。 2、外廓尺寸小,保证汽车具有足够的离地间隙,以满足通过性的要求。 3、齿轮及其他传动件工作平稳,噪声小。 4、在各种载荷和转速工况下有较高的传动效率。 5、具有足够的强度和刚度,以承受和传递作用于路面和车架或车身间的各种力和 力矩;在此条件下,尽可能降低质量,尤其是簧下质量,减少不平路面的冲击载荷, 提高汽车的平顺性。 6、与悬架导向机构运动协调。 7、结构简单,加工工艺性好,制造容易,维修,调整方便。 设计车型主要参数 表设计车型参数 轮胎 发动机最大功率3000P kW/n p ( r/min ) emax 发动机最大转矩380/12001400T emax N·m/n r( r/min )整备质量4310kg 额定载质量5000kg 最大车速110km/h 轮距(双胎中心线)3800mm 主减速器结构方案的确定 1.3.1 主减速比的计算 主减速比 i 0对主减速器的结构形式、轮廓尺寸、质量大小影响很大。当变速器处 于最高档位时 i 0对汽车的动力性和燃料经济性都有直接影响。i0的选择应在汽车总体设计时和传动系统的总传动比一起由整车动力计算来确定。可利用在不同的下的功率 平衡图来计算对汽车动力性的影响。通过优化设计,对发动机与传动系参数作最佳匹 配的方法来选择 i 0 值,可是汽车获得最佳的动力性和燃料经济性。 对于具有很大功率储备的轿车、长途公共汽车尤其是竞赛车来说,在给定发动机 最大功率 P amax 及其转速 n p 的情况下,所选择的 i 0 值应能保证这些汽车有尽可能高的最高车速 v amax 。这时 i 0 值应按下式来确定 5 : r r n p ()式中: i 0 = r r v a max i gh 车轮的滚动半径, r r =0.405m i gh 变速器最高档传动比(为直接档) 。 n p 最大功率转速 3200 r/min v a 最大车速 90km/h 对于与其他汽车来说,为了得到足够的功率而使最高车速稍有下降,一般选得比最小值大 10%25%,即按下式选择: i 0 =() r r n p () v a max i gh 经计算初步确定 i 0 = 按上式求得的 i 0 应与同类汽车的主减速比相比较,并考虑到主、从动主减速齿轮可能的齿数对 i 0 予以校正并最后确定。 1.3.2 主减速器的齿轮类型 本次设计采用螺旋锥齿轮。 1.3.3 主减速器的减速形式 本次设计货车主减速比 i 0 =,所以采用单级主减速器。 1.3.4 主减速器主从动锥齿轮的支承形式及安装方法 1、主减速器主动锥齿轮的支承形式及安装方式的选择 现在汽车主减速器主动锥齿轮的支承形式有如下两种: (1)悬臂式 ;( 2)骑马式 跟据实际情况,所设计的为轻型货车所以采用悬臂式支撑。 2、主减速器从动锥齿轮的支承形式及安装方式的选择 本次设计主动锥齿轮采用悬臂式支撑 (圆锥滚子轴承),从动锥齿轮采用骑马式支 撑(圆锥滚子轴承)。 差速器结构方案的确定 本次设计选用:普通锥齿轮式差速器,因为它结构简单,工作平稳可靠,适用于本次设计的汽车驱动桥。 半轴形式的确定 根据相关车型及设计要求,本设计采用全浮半轴。 桥壳形式的确定 桥壳的结构型式大致分为可分式,组合式整体式三种。 本次设计驱动桥壳就选用整体式桥壳。 第 2 章主减速器设计 概述 主减速器是汽车传动系中减小转速、增大扭矩的主要部件,它是依靠齿数少的锥齿轮带动齿数多的锥齿轮。对发动机纵置的汽车,其主减速器还利用锥齿轮传动以改变 动力方向。由于汽车在各种道路上行使时,其驱动轮上要求必须具有一定的驱动力矩 和转速,在动力向左右驱动轮分流的差速器之前设置一个主减速器后,便可使主减速 器前面的传动部件如变速器、万向传动装置等所传递的扭矩减小,从而可使其尺寸及 质量减小、操纵省力。 主减速器齿轮参数的选择与强度计算 2.2.1 主减速器齿轮计算载荷的确定 1、按发动机最大转矩和最低挡传动比确定从动锥齿轮的计算转矩T je T je T emax i TL K 0 T /n() 式中:发动机最大转矩201 N m ; i TL由发动机到所计算的主减速器从动齿轮之间的传动系最低档传动比 i TL=i 0 i1=×= 变速器传动比 i1=; T上述传动部分的效率,取T =; K 0超载系数,取K 0=; n驱动桥数目 1。 T je=201 1 1= N m 2、按驱动轮在良好路面上打滑转矩确定从动锥齿轮的计算转矩T j G 2r r () T j i LB LB 式中:G 2汽车满载时驱动桥给水平地面的最大负荷,N;但后桥来说还应考虑到汽车加速时负腷增大量,可初取: G2=G满×=4100×=40180N; 轮胎对地面的附着系数,对于安装一般轮胎的公路用汽车,取=; 对于越野汽车,取=; r r车轮滚动半径,0.405m; LB ,i LB分别为由所计算的主减速器从动齿轮到驱动轮之间的传动效率和传动比,分别取和1。 G 2r r =40180 0.850.405 = N m T j i LB0.961 LB 通常是将发动机最大转矩配以传动系最低档传动比时和驱动车轮打滑时这两种情 况下作用于主减速器从动齿轮上的转矩(T je , T j)的较小者,作为载货汽车计算中用以验算主减速器从动齿轮最大应力的计算载荷。 由式(),式()求得的计算载荷,是最大转矩而不是正常持续转矩,不能用它作 为疲劳损坏依据。汽车的类型很多,行驶工况又非常复杂,轿车一般在高速轻载条件 下工作,而矿用车和越野车在高负荷低车速条件下工作,对于公路车辆来说,使用条 件较非公路用车稳定,其正常持续转矩是根据所谓平均牵引力的值来确定的,即主减 速器的平均计算转矩。 3、按汽车日常行驶平均转矩确定从动锥齿轮的计算转矩T jm T jm=(G a G T ) r r( f R f H f P )()i LB LB n 式中: G a汽车满载总重N, G a=6000×=58800N; G T所牵引的挂车满载总重,N,仅用于牵引车取 G T=0; f R道路滚动阻力系数,初取 f R=; f H汽车正常使用时的平均爬坡能力系数。初取 f H=; f P汽车性能系数 f P1160.195(G a G T ) () 100T e max 当0.195(G a G T ) =>16时,取f P=0。 T e max (G a G T) r r ( f R f H 588000.405 (0.015 0.050) = N m T jm= n f P ) = 0.96 1 1 i LB LB 2.2.2主减速器齿轮参数的选择 1、主、从动齿数的选择 选择主、从动锥齿轮齿数时应考虑如下因素:为了磨合均匀, z1, z2之间应避免有公约数;为了得到理想的齿面重合度和高的轮齿弯曲强度,主、从动齿轮齿数和应不 小于 40;为了啮合平稳,噪声小和具有高的疲劳强度对于商用车z1一般不小于6;主 传动比 i 0较大时, z1尽量取得小一些,以便得到满意的离地间隙。对于不同的主传动比, z1和 z2应有适宜的搭配。 主减速器的传动比为,初定主动齿轮齿数z1 =7,从动齿轮齿数 z2=43。 2、从动锥齿轮节圆直径d2及端面模数 m t的选择 根据从动锥齿轮的计算转矩(见式和式并取两式计算结果中较小的一个作为计算依据)按经验公式选出: d 2 K d 3 T j()式2 中: K d2直径系数,取 K d2=1316; T j计算转矩,N m,取 T j, T je较小的。取 T je= N m。 计算得, d2=,初取 d 2=300mm。 d2选定后,可按式 m d 2 / z2算出从动齿轮大端模数,并用下式校核 3 () m t K m T j 式中: K m模数系数,取Km =; T j计算转矩,N m ,取T je。 3 3 m t K m T j = (0.3 0.4)6675.46 = 由GB/T12368-1990,取m t =7mm,满足校核。 所以有: d1=49mm d2=301mm。 3、螺旋锥齿轮齿面宽的选择 通常推荐圆锥齿轮从动齿轮的齿宽 F 为其节锥距A0的倍。对于汽车工业,主减速器螺旋锥齿轮面宽度推荐采用: F=d2 =46.66mm,可初取 F2 =50mm。 一般习惯使锥齿轮的小齿轮齿面宽比大齿轮稍大,使其在大齿轮齿面两端都超出一些,通常小齿轮的齿面加大10%较为合适,在此取F1=55mm 。 4、螺旋锥齿轮螺旋方向 主、从动锥齿轮的螺旋方向是相反的。螺旋方向与锥齿轮的旋转方向影响其所受 的轴向力的方向。当变速器挂前进挡时,应使主动锥齿轮的轴向力离开锥顶方向。这 样可使主、从动齿轮有分离的趋势,防止轮齿因卡死而损坏。 所以主动锥齿轮选择为左旋,从锥顶看为逆时针运动,这样从动锥齿轮为右旋, 从锥顶看为顺时针,驱动汽车前进。 5、旋角的选择 螺旋角是在节锥表面的展开图上定义的,齿面宽中点处为该齿轮的名义螺旋角。 螺旋角应足够大以使 m F。因 m F越大传动就越干稳,噪声就越低。在一般机械制造用的标准制中,螺旋角推荐用 35°。 6、法向压力角 a 的选择 压力角可以提高齿轮的强度,减少齿轮不产生根切的最小齿数,但对于尺寸小的 齿轮,大压力角易使齿顶变尖及刀尖宽度过小,并使齿轮的端面重叠系数下降,一般 对于“格里森”制主减速器螺旋锥齿轮来说,载货汽车可选用20°压力角。 7、主从动锥齿轮几何计算 计算结果如表 表主减速器齿轮的几何尺寸计算用表 序号项目1主动齿轮齿数2从动齿轮齿数3模数 4齿面宽 5工作齿高6全齿高 7法向压力角8轴交角 9节圆直径10节锥角 11节锥距12周节 13齿顶高14齿根高 计算公式 z1 z2 m F h g H 1m h H 2m d =m z z1 1arctan z2 2 =90°-1 A0 = d 2 2 sin2 t=m h a1h g h a 2 h a2k a m h f=h h a 计算结果 7 43 7 F1=55mm F2=50mm h g10.92mm h=12.131mm =20° =90° d149mm d 2=301mm 1=° 2=° A 0 =152.486mm t=21.99mm h a1=9.03mm h a 2=1.89mm h f 1=3.101mm 序号项目计算公式计算结果 h f 2=10.241mm 15径向间隙c= h h g 16齿根角 h f arctan A0 17面锥角a11 2 ; a 2 18根锥角 f 1 =11 f 2 = 22 a1 d12h a1cos 19外圆直径d d a 2=d12h a2 cos d 2 c=1.211mm 1 =° 2 =° a1 =° 21 a2 =° f 1 =° f 2 =° 1 d a1=68.825mm 2 d a 2=301.607mm 01h a1 sin 20节锥顶点止齿轮外缘距离2 d1 02h a2 sin 21 2 01 =149.049mm 02 =22.634mm 21理论弧齿厚s1t s2 s2S k m 22齿侧间隙B= 23螺旋角s1=16.27mm s2=5.72mm 0.2mm =35° 2.2.3 螺旋锥齿轮的强度计算 1、损坏形式及寿命 在完成主减速器齿轮的几何计算之后,应对其强度进行计算,以保证其有足够的 强度和寿命以及安全可靠性地工作。在进行强度计算之前应首先了解齿轮的破坏形式 及其影响因素。 齿轮的损坏形式常见的有轮齿折断、齿面点蚀及剥落、齿面胶合、齿面磨损等。 它们的主要特点及影响因素分述如下: 汽车驱动桥的齿轮,承受的是交变负荷,其主要损坏形式是疲劳。其表现是齿根疲劳 折断和由表面点蚀引起的剥落。在要求使用寿命为20 万千米或以上时,其循环次数均 2 以超过材料的耐久疲劳次数。因此,驱动桥齿轮的许用弯曲应力不超过 mm 。 实践表明,主减速器齿轮的疲劳寿命主要与最大持续载荷(即平均计算转矩)有关,而与汽车预期寿命期间出现的峰值载荷关系不大。汽车驱动桥的最大输出转矩和 最大附着转矩并不是使用中的持续载荷,强度计算时只能用它来验算最大应力,不能