欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    函数的周期性(基础学习知识练习情况总结复习资料习题集练习进步知识学习).doc

    • 资源ID:2586813       资源大小:956.13KB        全文页数:8页
    • 资源格式: DOC        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    函数的周期性(基础学习知识练习情况总结复习资料习题集练习进步知识学习).doc

    ,.课题:函数的周期性考纲要求:了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性.教材复习 周期函数:对于函数,如果存在非零常数,使得当取定义域内的任何值时,都有 ,那么就称函数为周期函数,称为这个函数的一个周期.最小正周期:如果在周期函数的所有周期中 的正数,那么这个最小正数就叫作的最小正周期.基本知识方法 周期函数的定义:对于定义域内的每一个,都存在非零常数,使得恒成立,则称函数具有周期性,叫做的一个周期,则()也是的周期,所有周期中的最小正数叫的最小正周期.几种特殊的抽象函数:具有周期性的抽象函数:函数满足对定义域内任一实数(其中为常数), ,则是以为周期的周期函数; ,则是以为周期的周期函数;,则是以为周期的周期函数; ,则是以为周期的周期函数;,则是以为周期的周期函数.,则是以为周期的周期函数.,则是以为周期的周期函数.函数满足(),若为奇函数,则其周期为,若为偶函数,则其周期为.函数的图象关于直线和都对称,则函数是以为周期的周期函数;函数的图象关于两点、都对称,则函数是以为周期的周期函数;函数的图象关于和直线都对称,则函数是以为周期的周期函数;判断一个函数是否是周期函数要抓住两点:一是对定义域中任意的恒有; 二是能找到适合这一等式的非零常数,一般来说,周期函数的定义域均为无限集.解决周期函数问题时,要注意灵活运用以上结论,同时要重视数形结合思想方法的运用,还要注意根据所要解决的问题的特征来进行赋值.问题1(山东)已知定义在上的奇函数满足,则的值为 xyBA问题2(上海) 设的最小正周期且为偶函数,它在区间上的图象如右图所示的线段,则在区间上, 已知函数是周期为的函数,当时,当 时,的解析式是 是定义在上的以为周期的函数,对,用表示区间,已知当时,求在上的解析式。 问题3(福建)定义在上的函数满足,当时,则 ; ; (天津文) 设是定义在上以为周期的函数,在内单调递减,且的图像关于直线对称,则下面正确的结论是 问题4定义在上的函数,对任意,有,且,求证:;判断的奇偶性;若存在非零常数,使,证明对任意都有成立;函数是不是周期函数,为什么?问题5(全国)设是定义在上的偶函数,其图象关于直线对称,对任意的,都有.设,求、;证明:是周期函数.记,求.课后作业: (榆林质检)若已知是上的奇函数,且满足,当时,则等于 设函数()是以为周期的奇函数,且,则 函数既是定义域为的偶函数,又是以为周期的周期函数,若在上是减函数,那么在上是增函数 减函数 先增后减函数 先减后增函数设,记,则 已知定义在上的函数满足,且,则 设偶函数对任意,都有,且当时,则 设函数是定义在上的奇函数,对于任意的,都有,当时,则 已知是定义在上的奇函数,满足,且时,.求证:是周期函数;当时,求的表达式;计算.(朝阳模拟)已知函数的图象关于点对称,且满足,又,求的值走向高考: (福建)是定义在上的以为周期的奇函数,且在区间内解的个数的最小值是 (山东)定义在 上的函数 满足,当时,当时,则 (全国)已知函数为上的奇函数,且满足,当时,则等于 (安徽)函数对于任意实数满足条件,若,则 (福建文)已知是周期为的奇函数,当时,设则(天津)定义在上的函数既是偶函数又是周期函数,若的最小正周期是,且当时,则的值为 (天津)设是定义在上的奇函数,且的图象关于直线对称,则 (广东)设函数在上满足,且在闭区间上,只有()试判断函数的奇偶性;()试求方程在闭区间上的根的个数,并证明你的结论.

    注意事项

    本文(函数的周期性(基础学习知识练习情况总结复习资料习题集练习进步知识学习).doc)为本站会员(一***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开