2019版高考数学(理)高分计划一轮狂刷练:第3章 三角函数、解三角形 3-4a .doc
-
资源ID:2609951
资源大小:215KB
全文页数:14页
- 资源格式: DOC
下载积分:5金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2019版高考数学(理)高分计划一轮狂刷练:第3章 三角函数、解三角形 3-4a .doc
基础送分 提速狂刷练一、选择题1(2018合肥质检)要想得到函数ysin2x1的图象,只需将函数ycos2x的图象()A向左平移个单位长度,再向上平移1个单位长度B向右平移个单位长度,再向上平移1个单位长度C向左平移个单位长度,再向下平移1个单位长度D向右平移个单位长度,再向下平移1个单位长度答案B解析先将函数ycos2xsin的图象向右平移个单位长度,得到ysin2x的图象,再向上平移1个单位长度,即得ysin2x1的图象,故选B.2(2017福建质检)若将函数y3cos的图象向右平移个单位长度,则平移后图象的一个对称中心是()A. B.C. D.答案A解析将函数y3cos的图象向右平移个单位长度,得y3cos3cos的图象,由2xk(kZ),得x(kZ),当k0时,x,所以平移后图象的一个对称中心是,故选A.3将函数ycos的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向左平移个单位,所得函数图象的一条对称轴是()Ax Bx Cx Dx答案D解析ycosycos向左平移个单位ycos,即ycos.令xk,kZ,求得x2k,取k0,则x.故选D.4(2018广州模拟)将函数f(x)sin(2x)的图象向右平移(>0)个单位长度后得到函数g(x)的图象,若f(x),g(x)的图象都经过点P,则的值可以是()A. B. C. D.答案B解析因为函数f(x)的图象过点P,所以,所以f(x)sin.又函数f(x)的图象向右平移个单位长度后,得到函数g(x)sin的图象,所以sin,所以可以为,故选B.5(2018湖北调研)如图所示,某地一天614时的温度变化曲线近似满足函数yAsin(x)b的图象,则这段曲线的函数解析式可以为()Ay10sin20,x6,14By10sin20,x6,14Cy10sin20,x6,14Dy10sin20,x6,14答案A解析由三角函数的图象可知,b20,A10,1468T16,则y10sin20,将(6,10)代入得10sin2010sin12k(kZ),取k0,故选A.6(2015安徽高考)已知函数f(x)Asin(x)(A,均为正的常数)的最小正周期为,当x时,函数f(x)取得最小值,则下列结论正确的是()Af(2)<f(2)<f(0) Bf(0)<f(2)<f(2)Cf(2)<f(0)<f(2) Df(2)<f(0)<f(2)答案A解析f(x)Asin(x)的最小正周期为,且x是经过函数f(x)最小值点的一条对称轴,x是经过函数f(x)最大值点的一条对称轴,>>,且<2<,<2<,<0<,f(2)<f(2)<f(0),即f(2)<f(2)<f(0)故选A.7(2018安阳检测)已知函数f(x)sin(x)的部分图象如图所示,则f()A1 B0 C. D1答案B解析易得2,由五点法作图可知2,得,即f(x)sin.故f1,f,f,f1,f,f,故f3360.故选B.8(2017河北二模)要得到函数f(x)cos的图象,只需将函数g(x)sin的图象()A向左平移个单位长度B向右平移个单位长度C向左平移个单位长度D向右平移个单位长度答案C解析f(x)coscossinsin,故把g(x)sin的图象向左平移个单位,即得函数f(x)sin的图象,即得到函数f(x)cos的图象故选C.9如图,函数f(x)Asin(x)的部分图象与坐标轴的三个交点P,Q,R满足P(1,0),PQR,M(2,2)为线段QR的中点,则A的值为()A2 B. C. D4答案C解析依题意得,点Q的横坐标是4,点R的纵坐标是4,T2|PQ|6,Asin4,fA,AsinA,sin1.又|,Asin4,A,故选C.10(2015湖南高考)将函数f(x)sin2x的图象向右平移个单位后得到函数g(x)的图象若对满足|f(x1)g(x2)|2的x1,x2,有|x1x2|min,则()A. B. C. D.答案D解析g(x)sin2(x)sin(2x2)|f(x)|1,|g(x)|1,|f(x1)g(x2)|2,当且仅当f(x1)1,g(x2)1或f(x1)1,g(x2)1时,满足|f(x1)g(x2)|2.不妨设A(x1,1)是函数f(x)图象的一个最低点,B(x2,1)是函数g(x)图象的一个最高点,于是x1k1(k1Z),x2k2(k2Z),|x1x2|.,|x1x2|.又|x1x2|min,即,故选D.二、填空题11已知函数ysinx(>0)在一个周期内的图象如图所示,要得到函数ysin的图象,则需将函数ysinx的图象向_平移_个单位长度答案左解析由图象知函数ysinx的周期为T4,故ysinx.又ysinsin,将函数ysinx的图象向左平移个单位长度,即可得到函数ysin的图象12(2017河南一模)将函数f(x)2cos2x的图象向右平移个单位后得到函数g(x)的图象,若函数g(x)在区间和上均单调递增,则实数a的取值范围是_答案解析将函数f(x)2cos2x的图象向右平移个单位后得到函数g(x)的图象,得g(x)2cos2cos,由2k2x2k,得kxk,kZ.当k0时,函数的增区间为,当k1时,函数的增区间为.要使函数g(x)在区间和上均单调递增,则解得a.13(2017三明一模)已知函数f(x)Mcos(x)(M>0,>0,0<<)为奇函数,该函数的部分图象如图所示,ACBC,C90,则f的值为_答案解析依题意,知ABC是直角边长为的等腰直角三角形,因此其边AB上的高是,函数f(x)的最小正周期是2,故M,2,f(x)cos(x)又函数f(x)是奇函数,于是有k,kZ.由0<<,得,故f(x)sinx,fsin.14(2017烟台二模)已知函数f(x)cos(2x)的图象关于点对称,若将函数f(x)的图象向右平移m(m>0)个单位得到一个偶函数的图象,则实数m的最小值为_答案解析函数f(x)的图象关于点对称,2k(kZ),解得k,kZ.f(x)cos,kZ.f(x)的图象向右平移m个单位得到函数ycos(kZ)为偶函数,x0为其对称轴,即2mkk1(kZ,k1Z),m(kZ,k1Z),m>0,m的最小正值为,此时kk11,kZ,k1Z.三、解答题15(2017九原期末)已知函数f(x)3sin3.(1)指出f(x)的最小正周期,并用五点法画出它在一个周期内的闭区间上的图象;(2)求f(x)在0,4上的单调区间;并求出f(x)在0,4上最大值及其对应x的取值集合;(3)说明此函数图象是由ysinx在0,2上的图象经怎样的变换得到的解(1)f(x)的最小正周期为周期T4,列表如下:x02y36303(2)增区间为和;减区间为;f(x)在0,4上的最大值为6,此时x的取值集合为.(3)由ysinx的图象上各点向左平移个长度单位,得ysin的图象;由ysin的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),得ysin的图象;由ysin的图象上各点的纵坐标伸长为原来的3倍(横坐标不变),得y3sin的图象;由y3sin的图象上各点向上平移3个长度单位,得y3sin3的图象16(2018绵阳模拟)已知函数f(x)sin(x)b相邻两对称轴间的距离为,若将f(x)的图象先向左平移个单位,再向下平移1个单位,所得的函数g(x)的为奇函数(1)求f(x)的解析式,并求f(x)的对称中心;(2)若关于x的方程3g(x)2mg(x)20在区间上有两个不相等的实根,求实数m的取值范围解(1)由题意可得,2,f(x)sin(2x)b,g(x)sinb1sinb1.再结合函数g(x)为奇函数,可得k,kZ,且b10,再根据<<,可得,b1,f(x)sin1,g(x)sin2x.令2xn,nZ,可得x,f(x)的对称中心.(2)由(1)可得g(x)sin2x,在区间上,2x0,令tg(x),则t0,1由关于x的方程3g(x)2mg(x)20在区间上有两个不相等的实根,可得关于t的方程3t2mt20在区间(0,1)上有唯一解令h(t)3t2mt2,h(0)2>0,则满足h(1)3m2<0,或求得m<5或m2.