欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    (江苏专版)2019版高考数学一轮复习讲义: 第十五章 圆锥曲线与方程 15.1 椭圆讲义.doc

    • 资源ID:2610773       资源大小:6.11MB        全文页数:43页
    • 资源格式: DOC        下载积分:5金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    (江苏专版)2019版高考数学一轮复习讲义: 第十五章 圆锥曲线与方程 15.1 椭圆讲义.doc

    15.1椭圆命题探究(1)设椭圆的半焦距为c.因为椭圆E的离心率为12,两准线之间的距离为8,所以ca=12,2a2c=8,解得a=2,c=1,于是b=a2-c2=3,因此椭圆E的标准方程是x24+y23=1.(2)由(1)知,F1(-1,0),F2(1,0).设P(x0,y0),因为P为第一象限的点,故x0>0,y0>0.当x0=1时,l2与l1相交于F1,与题设不符.当x01时,直线PF1的斜率为y0x0+1,直线PF2的斜率为y0x0-1.因为l1PF1,l2PF2,所以直线l1的斜率为-x0+1y0,直线l2的斜率为-x0-1y0,从而直线l1的方程:y=-x0+1y0(x+1),直线l2的方程:y=-x0-1y0(x-1).由,解得x=-x0,y=x02-1y0,所以Q-x0,x02-1y0.因为点Q在椭圆上,由对称性,得x02-1y0=y0,即x02-y02=1或x02+y02=1.又P在椭圆E上,故x024+y023=1.由x02-y02=1,x024+y023=1,解得x0=477,y0=377;x02+y02=1,x024+y023=1,无解.因此点P的坐标为477,377.考纲解读考点内容解读要求五年高考统计常考题型预测热度201320142015201620171.椭圆的定义和标准方程椭圆的标准方程B18题16分填空题解答题2.椭圆的性质椭圆的性质及应用B12题5分17题14分10题5分填空题解答题分析解读椭圆的标准方程和几何性质是江苏高考的必考内容,重点考查椭圆方程的求解,椭圆离心率的求法,在解答题中对运算化简能力的要求比较高.五年高考考点一椭圆的定义和标准方程1.(2014大纲全国改编,6,5分)已知椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点为F1、F2,离心率为33,过F2的直线l交C于A、B两点.若AF1B的周长为43,则C的方程为.答案x23+y22=12.(2014福建改编,9,5分)设P,Q分别为圆x2+(y-6)2=2和椭圆x210+y2=1上的点,则P,Q两点间的最大距离是.答案623.(2013课标全国理改编,10,5分)已知椭圆E:x2a2+y2b2=1(a>b>0)的右焦点为F(3,0),过点F的直线交E于A,B两点.若AB的中点坐标为(1,-1),则E的方程为.答案x218+y29=14.(2017课标全国,20,12分)已知椭圆C:x2a2+y2b2=1(a>b>0),四点P1(1,1),P2(0,1),P3-1,32,P41,32中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为-1,证明:l过定点.解析(1)由于P3,P4两点关于y轴对称,故由题设知C经过P3,P4两点.又由1a2+1b2>1a2+34b2知,C不经过点P1,所以点P2在C上.因此1b2=1,1a2+34b2=1,解得a2=4,b2=1.故C的方程为x24+y2=1.(2)证明:设直线P2A与直线P2B的斜率分别为k1,k2.如果l与x轴垂直,设l:x=t,由题设知t0,且|t|<2,可得A,B的坐标分别为t,4-t22,t,-4-t22.则k1+k2=4-t2-22t-4-t2+22t=-1,得t=2,不符合题设.从而可设l:y=kx+m(m1).将y=kx+m代入x24+y2=1得(4k2+1)x2+8kmx+4m2-4=0.由题设可知=16(4k2-m2+1)>0.设A(x1,y1),B(x2,y2),则x1+x2=-8km4k2+1,x1x2=4m2-44k2+1.而k1+k2=y1-1x1+y2-1x2=kx1+m-1x1+kx2+m-1x2=2kx1x2+(m-1)(x1+x2)x1x2,由题设k1+k2=-1,故(2k+1)x1x2+(m-1)(x1+x2)=0.即(2k+1)4m2-44k2+1+(m-1)-8km4k2+1=0.解得k=-m+12.当且仅当m>-1时,>0,于是l:y=-m+12x+m,即y+1=-m+12(x-2),所以l过定点(2,-1).5.(2017天津文,20,14分)已知椭圆x2a2+y2b2=1(a>b>0)的左焦点为F(-c,0),右顶点为A,点E的坐标为(0,c),EFA的面积为b22.(1)求椭圆的离心率;(2)设点Q在线段AE上,|FQ|=32c,延长线段FQ与椭圆交于点P,点M,N在x轴上,PMQN,且直线PM与直线QN间的距离为c,四边形PQNM的面积为3c.(i)求直线FP的斜率;(ii)求椭圆的方程.解析(1)设椭圆的离心率为e.由已知,可得12(c+a)c=b22.又由b2=a2-c2,可得2c2+ac-a2=0,即2e2+e-1=0.又因为0<e<1,解得e=12.所以,椭圆的离心率为12.(2)(i)依题意,设直线FP的方程为x=my-c(m>0),则直线FP的斜率为1m.由(1)知a=2c,可得直线AE的方程为x2c+yc=1,即x+2y-2c=0,与直线FP的方程联立,可解得x=(2m-2)cm+2,y=3cm+2,即点Q的坐标为(2m-2)cm+2,3cm+2.由已知|FQ|=32c,有(2m-2)cm+2+c2+3cm+22=3c22,整理得3m2-4m=0,所以m=43,即直线FP的斜率为34.(ii)由a=2c,可得b=3c,故椭圆方程可以表示为x24c2+y23c2=1.由(i)得直线FP的方程为3x-4y+3c=0,与椭圆方程联立得3x-4y+3c=0,x24c2+y23c2=1,消去y,整理得7x2+6cx-13c2=0,解得x=-13c7(舍去),或x=c.因此可得点Pc,3c2,进而可得|FP|=(c+c)2+3c22=5c2,所以|PQ|=|FP|-|FQ|=5c2-3c2=c.由已知,线段PQ的长即为PM与QN这两条平行直线间的距离,故直线PM和QN都垂直于直线FP.因为QNFP,所以|QN|=|FQ|tanQFN=3c234=9c8,所以FQN的面积为12|FQ|QN|=27c232,同理FPM的面积等于75c232,由四边形PQNM的面积为3c,得75c232-27c232=3c,整理得c2=2c,又由c>0,得c=2.所以,椭圆的方程为x216+y212=1.6.(2016山东,21,14分)已知椭圆C:x2a2+y2b2=1(a>b>0)的长轴长为4,焦距为22.(1)求椭圆C的方程;(2)过动点M(0,m)(m>0)的直线交x轴于点N,交C于点A,P(P在第一象限),且M是线段PN的中点.过点P作x轴的垂线交C于另一点Q,延长QM交C于点B.(i)设直线PM,QM的斜率分别为k,k,证明kk为定值;(ii)求直线AB的斜率的最小值.解析(1)设椭圆的半焦距为c.由题意知2a=4,2c=22,所以a=2,b=a2-c2=2.所以椭圆C的方程为x24+y22=1.(2)(i)证明:设P(x0,y0)(x0>0,y0>0).由M(0,m),可得P(x0,2m),Q(x0,-2m).所以直线PM的斜率k=2m-mx0=mx0,直线QM的斜率k=-2m-mx0=-3mx0.此时kk=-3.所以kk为定值-3.(ii)设A(x1,y1),B(x2,y2).直线PA的方程为y=kx+m,直线QB的方程为y=-3kx+m.联立y=kx+m,x24+y22=1,整理得(2k2+1)x2+4mkx+2m2-4=0.由x0x1=2m2-42k2+1,可得x1=2(m2-2)(2k2+1)x0.所以y1=kx1+m=2k(m2-2)(2k2+1)x0+m.同理x2=2(m2-2)(18k2+1)x0,y2=-6k(m2-2)(18k2+1)x0+m.所以x2-x1=2(m2-2)(18k2+1)x0-2(m2-2)(2k2+1)x0=-32k2(m2-2)(18k2+1)(2k2+1)x0,y2-y1=-6k(m2-2)(18k2+1)x0+m-2k(m2-2)(2k2+1)x0-m=-8k(6k2+1)(m2-2)(18k2+1)(2k2+1)x0,所以kAB=y2-y1x2-x1=6k2+14k=146k+1k.由m>0,x0>0,可知k>0,所以6k+1k26,等号当且仅当k=66时取得.此时m4-8m2=66,即m=147,符合题意.所以直线AB的斜率的最小值为62.7.(2016北京,19,14分)已知椭圆C:x2a2+y2b2=1过A(2,0),B(0,1)两点.(1)求椭圆C的方程及离心率;(2)设P为第三象限内一点且在椭圆C上,直线PA与y轴交于点M,直线PB与x轴交于点N.求证:四边形ABNM的面积为定值.解析(1)由题意得,a=2,b=1.所以椭圆C的方程为x24+y2=1.(3分)又c=a2-b2=3,所以离心率e=ca=32.(5分)(2)设P(x0,y0)(x0<0,y0<0),则x02+4y02=4.(6分)又A(2,0),B(0,1),所以,直线PA的方程为y=y0x0-2(x-2).令x=0,得yM=-2y0x0-2,从而|BM|=1-yM=1+2y0x0-2.(9分)直线PB的方程为y=y0-1x0x+1.令y=0,得xN=-x0y0-1,从而|AN|=2-xN=2+x0y0-1.(12分)所以四边形ABNM的面积S=12|AN|BM|=122+x0y0-11+2y0x0-2=x02+4y02+4x0y0-4x0-8y0+42(x0y0-x0-2y0+2)=2x0y0-2x0-4y0+4x0y0-x0-2y0+2=2.从而四边形ABNM的面积为定值.(14分)8.(2015江苏,18,16分)如图,在平面直角坐标系xOy中,已知椭圆x2a2+y2b2=1(a>b>0)的离心率为22,且右焦点F到左准线l的距离为3.(1)求椭圆的标准方程;(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.解析(1)由题意,得ca=22且c+a2c=3,解得a=2,c=1,则b=1,所以椭圆的标准方程为x22+y2=1.(2)当ABx轴时,AB=2,又CP=3,不合题意.当AB与x轴不垂直时,设直线AB的方程为y=k(x-1),A(x1,y1),B(x2,y2),将直线AB的方程代入椭圆方程,得(1+2k2)x2-4k2x+2(k2-1)=0,则x1,2=2k22(1+k2)1+2k2,C的坐标为2k21+2k2,-k1+2k2,且AB=(x2-x1)2+(y2-y1)2=(1+k2)(x2-x1)2=22(1+k2)1+2k2.若k=0,则线段AB的垂直平分线为y轴,与左准线平行,不合题意.从而k0,故直线PC的方程为y+k1+2k2=-1kx-2k21+2k2,则P点的坐标为-2,5k2+2k(1+2k2),从而PC=2(3k2+1)1+k2|k|(1+2k2).因为PC=2AB,所以2(3k2+1)1+k2|k|(1+2k2)=42(1+k2)1+2k2,解得k=1.此时直线AB的方程为y=x-1或y=-x+1.9.(2015安徽,20,13分)设椭圆E的方程为x2a2+y2b2=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为510.(1)求E的离心率e;(2)设点C的坐标为(0,-b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为72,求E的方程.解析(1)由题设条件知,点M的坐标为23a,13b,因为kOM=510,所以b2a=510.所以a=5b,c=a2-b2=2b.故e=ca=255.(2)由题设条件和(1)的计算结果可得,直线AB的方程为x5b+yb=1,点N的坐标为52b,-12b.设点N关于直线AB的对称点S的坐标为x1,72,则线段NS的中点T的坐标为54b+x12,-14b+74.因为点T在直线AB上,且kNSkAB=-1,所以有54b+x125b+-14b+74b=1,72+12bx1-52b=5,解得b=3.所以a=35,故椭圆E的方程为x245+y29=1.10.(2014课标,20,12分)已知点A(0,-2),椭圆E:x2a2+y2b2=1(a>b>0)的离心率为32,F是椭圆E的右焦点,直线AF的斜率为233,O为坐标原点.(1)求E的方程;(2)设过点A的动直线l与E相交于P,Q两点.当OPQ的面积最大时,求l的方程.解析(1)设F(c,0),由条件知,2c=233,得c=3.又ca=32,所以a=2,b2=a2-c2=1.故E的方程为x24+y2=1.(2)当lx轴时不合题意,故设l:y=kx-2,P(x1,y1),Q(x2,y2).将y=kx-2代入x24+y2=1得(1+4k2)x2-16kx+12=0.当=16(4k2-3)>0,即k2>34时,x1,2=8k24k2-34k2+1.从而|PQ|=k2+1|x1-x2|=4k2+14k2-34k2+1.又点O到直线PQ的距离d=2k2+1,所以OPQ的面积SOPQ=12d|PQ|=44k2-34k2+1.设4k2-3=t,则t>0,SOPQ=4tt2+4=4t+4t.因为t+4t4,当且仅当t=2,即k=72时等号成立,且满足>0,所以,当OPQ的面积最大时,l的方程为y=72x-2或y=-72x-2.教师用书专用(1117)11.(2016天津,19,14分)设椭圆x2a2+y23=1(a>3)的右焦点为F,右顶点为A.已知1|OF|+1|OA|=3e|FA|,其中O为原点,e为椭圆的离心率.(1)求椭圆的方程;(2)设过点A的直线l与椭圆交于点B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H.若BFHF,且MOA=MAO,求直线l的斜率.解析(1)设F(c,0),由1|OF|+1|OA|=3e|FA|,即1c+1a=3ca(a-c),可得a2-c2=3c2,又a2-c2=b2=3,所以c2=1,因此a2=4.所以,椭圆的方程为x24+y23=1.(2)设直线l的斜率为k(k0),则直线l的方程为y=k(x-2).设B(xB,yB),由方程组x24+y23=1,y=k(x-2)消去y,整理得(4k2+3)x2-16k2x+16k2-12=0.解得x=2,或x=8k2-64k2+3,由题意得xB=8k2-64k2+3,从而yB=-12k4k2+3.由(1)知,F(1,0),设H(0,yH),有FH=(-1,yH),BF=9-4k24k2+3,12k4k2+3.由BFHF,得BFFH=0,所以4k2-94k2+3+12kyH4k2+3=0,解得yH=9-4k212k.因此直线MH的方程为y=-1kx+9-4k212k.设M(xM,yM),由方程组y=k(x-2),y=-1kx+9-4k212k消去y,解得xM=20k2+912(k2+1).在MAO中,MOA=MAO|MA|=|MO|,即(xM-2)2+yM2=xM2+yM2,化简得xM=1,即20k2+912(k2+1)=1,解得k=-64,或k=64.所以,直线l的斜率为-64或64.12.(2015福建,18,13分)已知椭圆E:x2a2+y2b2=1(a>b>0)过点(0,2),且离心率e=22.(1)求椭圆E的方程;(2)设直线l:x=my-1(mR)交椭圆E于A,B两点,判断点G-94,0与以线段AB为直径的圆的位置关系,并说明理由.解析解法一:(1)由已知得b=2,ca=22,a2=b2+c2.解得a=2,b=2,c=2.所以椭圆E的方程为x24+y22=1.(2)设点A(x1,y1),B(x2,y2),AB的中点为H(x0,y0).由x=my-1,x24+y22=1得(m2+2)y2-2my-3=0,所以y1+y2=2mm2+2,y1y2=-3m2+2,从而y0=mm2+2.所以|GH|2=x0+942+y02=my0+542+y02=(m2+1)y02+52my0+2516.|AB|24=(x1-x2)2+(y1-y2)24=(1+m2)(y1-y2)24=(1+m2)(y1+y2)2-4y1y24=(1+m2)(y02-y1y2),故|GH|2-|AB|24=52my0+(1+m2)y1y2+2516=5m22(m2+2)-3(1+m2)m2+2+2516=17m2+216(m2+2)>0,所以|GH|>|AB|2.故点G-94,0在以AB为直径的圆外.解法二:(1)同解法一.(2)设点A(x1,y1),B(x2,y2),则GA=x1+94,y1,GB=x2+94,y2.由x=my-1,x24+y22=1得(m2+2)y2-2my-3=0,所以y1+y2=2mm2+2,y1y2=-3m2+2,从而GAGB=x1+94x2+94+y1y2=my1+54my2+54+y1y2=(m2+1)y1y2+54m(y1+y2)+2516=-3(m2+1)m2+2+52m2m2+2+2516=17m2+216(m2+2)>0,所以cos<GA,GB>>0.又GA,GB不共线,所以AGB为锐角.故点G-94,0在以AB为直径的圆外.13.(2015山东,20,13分)平面直角坐标系xOy中,已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为32,左、右焦点分别是F1,F2.以F1为圆心以3为半径的圆与以F2为圆心以1为半径的圆相交,且交点在椭圆C上.(1)求椭圆C的方程;(2)设椭圆E:x24a2+y24b2=1,P为椭圆C上任意一点.过点P的直线y=kx+m交椭圆E于A,B两点,射线PO交椭圆E于点Q.(i)求|OQ|OP|的值;(ii)求ABQ面积的最大值.解析(1)由题意知2a=4,则a=2.又ca=32,a2-c2=b2,可得b=1,所以椭圆C的方程为x24+y2=1.(2)由(1)知椭圆E的方程为x216+y24=1.(i)设P(x0,y0),|OQ|OP|=,由题意知Q(-x0,-y0).因为x024+y02=1,又(-x0)216+(-y0)24=1,即24x024+y02=1,所以=2,即|OQ|OP|=2.(ii)设A(x1,y1),B(x2,y2).将y=kx+m代入椭圆E的方程,可得(1+4k2)x2+8kmx+4m2-16=0,由>0,可得m2<4+16k2.则有x1+x2=-8km1+4k2,x1x2=4m2-161+4k2.所以|x1-x2|=416k2+4-m21+4k2.因为直线y=kx+m与y轴交点的坐标为(0,m),所以OAB的面积S=12|m|x1-x2|=216k2+4-m2|m|1+4k2=2(16k2+4-m2)m21+4k2=24-m21+4k2m21+4k2.设m21+4k2=t.将y=kx+m代入椭圆C的方程,可得(1+4k2)x2+8kmx+4m2-4=0,由0,可得m21+4k2.由可知0<t1,因此S=2(4-t)t=2-t2+4t.故S23,当且仅当t=1,即m2=1+4k2时取得最大值23.由(i)知,ABQ面积为3S,所以ABQ面积的最大值为63.14.(2013安徽理,18,12分)设椭圆E:x2a2+y21-a2=1的焦点在x轴上.(1)若椭圆E的焦距为1,求椭圆E的方程;(2)设F1,F2分别是椭圆E的左,右焦点,P为椭圆E上第一象限内的点,直线F2P交y轴于点Q,并且F1PF1Q.证明:当a变化时,点P在某定直线上.解析(1)因为焦距为1,所以2a2-1=14,解得a2=58.故椭圆E的方程为8x25+8y23=1.(2)设P(x0,y0),F1(-c,0),F2(c,0),其中c=2a2-1.由题设知x0c,则直线F1P的斜率kF1P=y0x0+c,直线F2P的斜率kF2P=y0x0-c.故直线F2P的方程为y=y0x0-c(x-c).当x=0时,y=cy0c-x0,即点Q的坐标为0,cy0c-x0.因此,直线F1Q的斜率为kF1Q=y0c-x0.由于F1PF1Q,所以kF1PkF1Q=y0x0+cy0c-x0=-1.化简得y02=x02-(2a2-1).将代入椭圆E的方程,由于点P(x0,y0)在第一象限,解得x0=a2,y0=1-a2,即点P在定直线x+y=1上.15.(2013山东理,22,13分)椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点分别是F1、F2,离心率为32,过F1且垂直于x轴的直线被椭圆C截得的线段长为1.(1)求椭圆C的方程;(2)点P是椭圆C上除长轴端点外的任一点,连结PF1,PF2.设F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围;(3)在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只有一个公共点.设直线PF1,PF2的斜率分别为k1,k2.若k0,试证明1kk1+1k2为定值,并求出这个定值.解析(1)由于c2=a2-b2,将x=-c代入椭圆方程x2a2+y2b2=1,得y=b2a,由题意知2b2a=1,即a=2b2.因为e=ca=32,所以a=2,b=1.所以椭圆C的方程为x24+y2=1.(2)设P(x0,y0)(y00).因为F1(-3,0),F2(3,0),所以直线PF1,PF2的方程分别为lPF1:y0x-(x0+3)y+3y0=0,lPF2:y0x-(x0-3)y-3y0=0.由题意知|my0+3y0|y02+(x0+3)2=|my0-3y0|y02+(x0-3)2 .由于点P在椭圆上,所以x024+y02=1.所以|m+3|320+22=|m-3|32x0-22 .因为-3<m<3,-2<x0<2,所以m+332x0+2=3-m2-32x0.所以m=34x0.因此-32<m<32.(3)设P(x0,y0)(y00),则直线l的方程为y-y0=k(x-x0).联立x24+y2=1,y-y0=k(x-x0),整理得(1+4k2)x2+8(ky0-k2x0)x+4(y02-2kx0y0+k2x02-1)=0.由题意知=0,即(4-x02)k2+2x0y0k+1-y02=0.因为x024+y02=1,所以16y02k2+8x0y0k+x02=0,故k=-x04y0.由(2)知1k1+1k2=x0+3y0+x0-3y0=2x0y0,所以1kk1+1kk2=1k1k1+1k2=-4y0x02x0y0=-8,因此1kk1+1kk2为定值,这个定值为-8.16.(2013重庆理,21,12分)如图,椭圆的中心为原点O,长轴在x轴上,离心率e=22,过左焦点F1作x轴的垂线交椭圆于A,A两点,|AA|=4.(1)求该椭圆的标准方程;(2)取垂直于x轴的直线与椭圆相交于不同的两点P,P,过P,P作圆心为Q的圆,使椭圆上的其余点均在圆Q外.若PQPQ,求圆Q的标准方程.解析(1)由题意知点A(-c,2)在椭圆上,则(-c)2a2+22b2=1,从而e2+4b2=1.由e=22得b2=41-e2=8,从而a2=b21-e2=16.故该椭圆的标准方程为x216+y28=1.(2)由椭圆的对称性,可设Q(x0,0).又设M(x,y)是椭圆上任意一点,则|QM|2=(x-x0)2+y2=x2-2x0x+x02+81-x216=12(x-2x0)2-x02+8(x-4,4).设P(x1,y1),由题意知,P是椭圆上到Q的距离最小的点,因此,上式当x=x1时取最小值,又因x1(-4,4),所以上式当x=2x0时取最小值,从而x1=2x0,且|QP|2=8-x02.因为PQPQ,且P(x1,-y1),所以QPQP=(x1-x0,y1)(x1-x0,-y1)=0,即(x1-x0)2-y12=0.由椭圆方程及x1=2x0得14x12-81-x1216=0,解得x1=463,x0=x12=263.从而|QP|2=8-x02=163.故这样的圆有两个,其标准方程分别为x+2632+y2=163,x-2632+y2=163.17.(2013浙江理,21,15分)如图,点P(0,-1)是椭圆C1:x2a2+y2b2=1(a>b>0)的一个顶点,C1的长轴是圆C2:x2+y2=4的直径.l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A,B两点,l2交椭圆C1于另一点D.(1)求椭圆C1的方程;(2)求ABD面积取最大值时直线l1的方程.解析(1)由题意得b=1,a=2.所以椭圆C1的方程为x24+y2=1.(2)设A(x1,y1),B(x2,y2),D(x0,y0).由题意知直线l1的斜率存在,不妨设其为k,则直线l1的方程为y=kx-1.又圆C2:x2+y2=4,故点O到直线l1的距离d=1k2+1,所以|AB|=24-d2=24k2+3k2+1.又l2l1,故直线l2的方程为x+ky+k=0.由x+ky+k=0,x2+4y2=4,消去y,整理得(4+k2)x2+8kx=0,故x0=-8k4+k2.所以|PD|=8k2+14+k2.设ABD的面积为S,则S=12|AB|PD|=84k2+34+k2,所以S=324k2+3+134k2+33224k2+3134k2+3=161313,当且仅当k=102时取等号.所以所求直线l1的方程为y=102x-1.考点二椭圆的性质1.(2017浙江改编,2,5分)椭圆x29+y24=1的离心率是.答案532.(2017课标全国文改编,12,5分)设A,B是椭圆C:x23+y2m=1长轴的两个端点.若C上存在点M满足AMB=120,则m的取值范围是.答案(0,19,+)3.(2016江苏,10,5分)如图,在平面直角坐标系xOy中,F是椭圆x2a2+y2b2=1(a>b>0)的右焦点,直线y=b2与椭圆交于B,C两点,且BFC=90,则该椭圆的离心率是.答案634.(2013江苏,12,5分)在平面直角坐标系xOy中,椭圆C的标准方程为x2a2+y2b2=1(a>b>0),右焦点为F,右准线为l,短轴的一个端点为B.设原点到直线BF的距离为d1,F到l的距离为d2.若d2=6d1,则椭圆C的离心率为.答案335.(2017山东理,21,14分)在平面直角坐标系xOy中,椭圆E:x2a2+y2b2=1(a>b>0)的离心率为22,焦距为2.(1)求椭圆E的方程;(2)如图,动直线l:y=k1x-32交椭圆E于A,B两点,C是椭圆E上一点,直线OC的斜率为k2,且k1k2=24.M是线段OC延长线上一点,且|MC|AB|=23,M的半径为|MC|,OS,OT是M的两条切线,切点分别为S,T.求SOT的最大值,并求取得最大值时直线l的斜率.解析(1)由题意知e=ca=22,2c=2,所以a=2,b=1,因此椭圆E的方程为x22+y2=1.(2)设A(x1,y1),B(x2,y2),联立x22+y2=1,y=k1x-32,消y整理得(4k12+2)x2-43k1x-1=0,由题意知>0,且x1+x2=23k12k12+1,x1x2=-12(2k12+1),所以|AB|=1+k12|x1-x2|=21+k121+8k121+2k12.由题意可知圆M的半径r=23|AB|=2231+k121+8k122k12+1.由题设知k1k2=24,所以k2=24k1,因此直线OC的方程为y=24k1x.由x22+y2=1,y=24k1x,得x2=8k121+4k12,y2=11+4k12,因此|OC|=x2+y2=1+8k121+4k12.由题意可知sinSOT2=rr+|OC|=11+|OC|r,而|OC|r=1+8k121+4k122231+k121+8k121+2k12=3241+2k121+4k121+k12,令t=1+2k12,则t>1,1t(0,1),因此|OC|r=32t2t2+t-1=3212+1t-1t2=321-1t-122+941,当且仅当1t=12,即t=2时等号成立,此时k1=22,所以sinSOT212,因此SOT26,所以SOT的最大值为3.综上所述:SOT的最大值为3,取得最大值时直线l的斜率k1=22.6.(2017北京文,19,14分)已知椭圆C的两个顶点分别为A(-2,0),B(2,0),焦点在x轴上,离心率为32.(1)求椭圆C的方程;(2)点D为x轴上一点,过D作x轴的垂线交椭圆C于不同的两点M,N,过D作AM的垂线交BN于点E.求证:BDE与BDN的面积之比为45.解析(1)设椭圆C的方程为x2a2+y2b2=1(a>b>0).由题意得a=2,ca=32,解得c=3.所以b2=a2-c2=1.所以椭圆C的方程为x24+y2=1.(2)证明:设M(m,n),则D(m,0),N(m,-n).由题设知m2,且n0.直线AM的斜率kAM=nm+2,故直线DE的斜率kDE=-m+2n.所以直线DE的方程为y=-m+2n(x-m).直线BN的方程为y=n2-m(x-2).由y=-m+2n(x-m),y=n2-m(x-2),解得点E的纵坐标yE=-n(4-m2)4-m2+n2.由点M在椭圆C上,得4-m2=4n2.所以yE=-45n.又SBDE=12|BD|yE|=25|BD|n|,SBDN=12|BD|n|,所以BDE与BDN的面积之比为45.7.(2016浙江理,19,15分)如图,设椭圆x2a2+y2=1(a>1).(1)求直线y=kx+1被椭圆截得的线段长(用a,k表示);(2)若任意以点A(0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围.解析(1)设直线y=kx+1被椭圆截得的线段为AP,由y=kx+1,x2a2+y2=1得(1+a2k2)x2+2a2kx=0,故x1=0,x2=-2a2k1+a2k2.因此|AP|=1+k2|x1-x2|=2a2|k|1+a2k21+k2.(2)假设圆与椭圆的公共点有4个,由对称性可设y轴左侧的椭圆上有两个不同的点P,Q,满足|AP|=|AQ|.记直线AP,AQ的斜率分别为k1,k2,且k1,k2>0,k1k2.由(1)知,|AP|=2a2|k1|1+k121+a2k12,|AQ|=2a2|k2|1+k221+a2k22,故2a2|k1|1+k121+a2k12=2a2|k2|1+k221+a2k22,所以(k12-k22)1+k12+k22+a2(2-a2)k12k22=0.由于k1k2,k1,k2>0得1+k12+k22+a2(2-a2)k12k22=0,因此1k12+11k22+1=1+a2(a2-2),因为式关于k1,k2的方程有解的充要条件是1+a2(a2-2)>1,所以a>2.因此,任意以点A(0,1)为圆心的圆与椭圆至多有3个公共点的充要条件为1<a2,由e=ca=a2-1a得,所求离心率的取值范围为0<e22.8.(2015北京,19,14分)已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为22,点P(0,1)和点A(m,n)(m0)都在椭圆C上,直线PA交x轴于点M.(1)求椭圆C的方程,并求点M的坐标(用m,n表示);(2)设O为原点,点B与点A关于x轴对称,直线PB交x轴于点N.问:y轴上是否存在点Q,使得OQM=ONQ?若存在,求点Q的坐标;若不存在,说明理由.解析(1)由题意得b=1,ca=22,a2=b2+c2,解得a2=2.故椭圆C的方程为x22+y2=1.设M(xM,0).因为m0,所以-1<n<1.直线PA的方程为y-1=n-1mx,所以xM=m1-n,即Mm1-n,0.(2)因为点B与点A关于x轴对称,所以B(m,-n).设N(xN,0),则xN=m1+n.“存在点Q(0,yQ)使得OQM=ONQ”等价于“存在点Q(0,yQ)使得|OM|OQ|=|OQ|ON|”,即yQ满足yQ2=|xM|xN|.因为xM=m1-n,xN=m1+n,m22+n2=1,所以yQ2=|xM|xN|=m21-n2=2.所以yQ=2或yQ=-2.故在y轴上存在点Q,使得OQM=ONQ.点Q的坐标为(0,2)或(0,-2).9.(2015重庆,21,12分)如图,椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,过F2的直线交椭圆于P,Q两点,且PQPF1.(1)若|PF1|=2+2,|PF2|=2-2,求椭圆的标准方程;(2)若|PF1|=|PQ|,求椭圆的离心率e.解析(1)由椭圆的定义,有2a=|PF1|+|PF2|=(2+2)+(2-2)=4,故a=2.设椭圆的半焦距为c,由已知PF1PF2,得2c=|F1F2|=|PF1|2+|PF2|2=(2+2)2+(2-2)2=23,即c=3,从而b=a2-c2=1.故所求椭圆的标准方程为x24+y2=1.(2)解法一:连结F1Q,如图,设点P(x0,y0)在椭圆上,且PF1PF2,则x02a2+y02b2=1,x02+y02=c2,求得x0=aca2-2b2,y0=b2c.由|PF1|=|PQ|>|PF2|得x0>0,从而|PF1|2=aa2-2b2c

    注意事项

    本文((江苏专版)2019版高考数学一轮复习讲义: 第十五章 圆锥曲线与方程 15.1 椭圆讲义.doc)为本站会员(荣***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开