专题06 解析几何文-2018年高考题和高考模拟题数学(文)分项版汇编 .doc
6解析几何1【2018年浙江卷】双曲线的焦点坐标是A. (,0),(,0) B. (2,0),(2,0) C. (0,),(0,) D. (0,2),(0,2)【答案】B点睛:由双曲线方程可得焦点坐标为,顶点坐标为,渐近线方程为.2【2018年天津卷文】已知双曲线 的离心率为2,过右焦点且垂直于轴的直线与双曲线交于两点.设到双曲线的同一条渐近线的距离分别为和,且 则双曲线的方程为A. B. C. D. 【答案】A【解析】分析:由题意首先求得A,B的坐标,然后利用点到直线距离公式求得b的值,之后求解a的值即可确定双曲线方程.详解:设双曲线的右焦点坐标为(c>0),则,由可得:,不妨设:,双曲线的一条渐近线方程为,据此可得:,则,则,双曲线的离心率:,据此可得:,则双曲线的方程为.本题选择A选项.点睛:求双曲线的标准方程的基本方法是待定系数法具体过程是先定形,再定量,即先确定双曲线标准方程的形式,然后再根据a,b,c,e及渐近线之间的关系,求出a,b的值如果已知双曲线的渐近线方程,求双曲线的标准方程,可利用有公共渐近线的双曲线方程为,再由条件求出的值即可.3【2018年新课标I卷文】已知椭圆:的一个焦点为,则的离心率为A. B. C. D. 【答案】C详解:根据题意,可知,因为,所以,即,所以椭圆的离心率为,故选C.点睛:该题考查的是有关椭圆的离心率的问题,在求解的过程中,一定要注意离心率的公式,再者就是要学会从题的条件中判断与之相关的量,结合椭圆中的关系求得结果.4【2018年全国卷文】已知双曲线的离心率为,则点到的渐近线的距离为A. B. C. D. 【答案】D【解析】分析:由离心率计算出,得到渐近线方程,再由点到直线距离公式计算即可。详解:,所以双曲线的渐近线方程为,所以点(4,0)到渐近线的距离,故选D点睛:本题考查双曲线的离心率,渐近线和点到直线距离公式,属于中档题。5【2018年全国卷文】直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是A. B. C. D. 【答案】A点睛:本题主要考查直线与圆,考查了点到直线的距离公式,三角形的面积公式,属于中档题。6【2018年全国卷II文】已知,是椭圆的两个焦点,是上的一点,若,且,则的离心率为A. B. C. D. 【答案】D【解析】分析:设,则根据平面几何知识可求,再结合椭圆定义可求离心率.详解:在中,设,则,又由椭圆定义可知,则离心率,故选D.点睛:椭圆定义的应用主要有两个方面:一是判断平面内动点与两定点的轨迹是否为椭圆,二是利用定义求焦点三角形的周长、面积、椭圆的弦长及最值和离心率问题等;“焦点三角形”是椭圆问题中的常考知识点,在解决这类问题时经常会用到正弦定理,余弦定理以及椭圆的定义.7【2018年浙江卷】已知点P(0,1),椭圆+y2=m(m>1)上两点A,B满足=2,则当m=_时,点B横坐标的绝对值最大【答案】5【解析】分析:先根据条件得到A,B坐标间的关系,代入椭圆方程解得B的纵坐标,即得B的横坐标关于m的函数关系,最后根据二次函数性质确定最值取法.点睛:解析几何中的最值是高考的热点,在圆锥曲线的综合问题中经常出现,求解此类问题的一般思路为在深刻认识运动变化的过程之中,抓住函数关系,将目标量表示为一个(或者多个)变量的函数,然后借助于函数最值的探求来使问题得以解决.8【2018年天津卷文】在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为_【答案】【解析】分析:由题意利用待定系数法求解圆的方程即可.详解:设圆的方程为,圆经过三点(0,0),(1,1),(2,0),则:,解得:,则圆的方程为.点睛:求圆的方程,主要有两种方法:(1)几何法:具体过程中要用到初中有关圆的一些常用性质和定理如:圆心在过切点且与切线垂直的直线上;圆心在任意弦的中垂线上;两圆相切时,切点与两圆心三点共线(2)待定系数法:根据条件设出圆的方程,再由题目给出的条件,列出等式,求出相关量一般地,与圆心和半径有关,选择标准式,否则,选择一般式不论是哪种形式,都要确定三个独立参数,所以应该有三个独立等式9【2018年文北京卷】若双曲线的离心率为,则a=_.【答案】4点睛:此题考查双曲线的基本知识,离心率是高考对于双曲线考查的一个重要考点,根据双曲线的离心率求双曲线的标准方程及双曲线的渐近线都是常见的出题形式,解题的关键在于利用公式,找到之间的关系.10【2018年文北京卷】已知直线l过点(1,0)且垂直于轴,若l被抛物线截得的线段长为4,则抛物线的焦点坐标为_.【答案】【解析】分析:根据题干描述画出相应图形,分析可得抛物线经过点,将点坐标代入可求参数的值,进而可求焦点坐标.详细:由题意可得,点在抛物线上,将代入中,解得:,由抛物线方程可得:, 焦点坐标为.点睛:此题考查抛物线的相关知识,属于易得分题,关键在于能够结合抛物线的对称性质,得到抛物线上点的坐标,再者熟练准确记忆抛物线的焦点坐标公式也是保证本题能够得分的关键.11【2018年江苏卷】在平面直角坐标系中,A为直线上在第一象限内的点,以AB为直径的圆C与直线l交于另一点D若,则点A的横坐标为_【答案】3点睛:以向量为载体求相关变量的取值或范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程或解不等式或求函数值域,是解决这类问题的一般方法.12【2018年江苏卷】在平面直角坐标系中,若双曲线的右焦点到一条渐近线的距离为,则其离心率的值是_【答案】2【解析】分析:先确定双曲线的焦点到渐近线的距离,再根据条件求离心率.详解:因为双曲线的焦点到渐近线即的距离为所以,因此 点睛:双曲线的焦点到渐近线的距离为b,焦点在渐近线上的射影到坐标原点的距离为a.13【2018年新课标I卷文】直线与圆交于两点,则_【答案】详解:根据题意,圆的方程可化为,所以圆的圆心为,且半径是2,根据点到直线的距离公式可以求得,结合圆中的特殊三角形,可知,故答案为.点睛:该题考查的是有关直线被圆截得的弦长问题,在解题的过程中,熟练应用圆中的特殊三角形半弦长、弦心距和圆的半径构成的直角三角形,借助于勾股定理求得结果.14【2018年全国卷文】已知点和抛物线,过的焦点且斜率为的直线与交于,两点若,则_【答案】2【解析】分析:利用点差法进行计算即可。详解:设,则,所以,所以取AB中点,分别过点A,B作准线的垂线,垂足分别为,因为,,因为M为AB中点,所以MM平行于x轴因为M(-1,1),所以,则即,故答案为2.点睛:本题主要考查直线与抛物线的位置关系,考查了抛物线的性质,设,利用点差法得到,取AB中点, 分别过点A,B作准线的垂线,垂足分别为,由抛物线的性质得到,进而得到斜率。15【2018年浙江卷】如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上()设AB中点为M,证明:PM垂直于y轴;()若P是半椭圆x2+=1(x<0)上的动点,求PAB面积的取值范围【答案】()见解析()详解:()设,因为,的中点在抛物线上,所以,为方程,即的两个不同的实数根所以因此,垂直于轴()由()可知,所以,因此,的面积因为,所以因此,面积的取值范围是点睛:求范围问题,一般利用条件转化为对应一元函数问题,即通过题意将多元问题转化为一元问题,再根据函数形式,选用方法求值域,如二次型利用对称轴与定义区间位置关系,分式型可以利用基本不等式,复杂性或复合型可以利用导数先研究单调性,再根据单调性确定值域.16【2018年天津卷文】设椭圆 的右顶点为A,上顶点为B.已知椭圆的离心率为,.(I)求椭圆的方程;(II)设直线与椭圆交于两点,与直线交于点M,且点P,M均在第四象限.若的面积是面积的2倍,求k的值.【答案】();().详解:(I)设椭圆的焦距为2c,由已知得,又由,可得由,从而所以,椭圆的方程为(II)设点P的坐标为,点M的坐标为,由题意,点的坐标为由的面积是面积的2倍,可得,从而,即易知直线的方程为,由方程组消去y,可得由方程组消去,可得由,可得,两边平方,整理得,解得,或当时,不合题意,舍去;当时,符合题意所以,的值为点睛:解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题17【2018年文北京卷】已知椭圆的离心率为,焦距为.斜率为k的直线l与椭圆M有两个不同的交点A,B.()求椭圆M的方程; ()若,求 的最大值;()设,直线PA与椭圆M的另一个交点为C,直线PB与椭圆M的另一个交点为D.若C,D和点 共线,求k.【答案】()()()【解析】分析:(1)根据题干可得的方程组,求解的值,代入可得椭圆方程;(2)设直线方程为,联立,消整理得,利用根与系数关系及弦长公式表示出,求其最值;(3)联立直线与椭圆方程,根据韦达定理写出两根关系,结合三点共线,利用共线向量基本定理得出等量关系,可求斜率.()设直线的方程为,由消去可得,则,即,设,则,则,易得当时,故的最大值为()设,则 , ,又,所以可设,直线的方程为,由消去可得,则,即,又,代入式可得,所以,所以,同理可得故,因为三点共线,所以,将点的坐标代入化简可得,即点睛:本题主要考查椭圆与直线的位置关系,第一问只要找到三者之间的关系即可求解;第二问主要考查学生对于韦达定理及弦长公式的运用,可将弦长公式变形为,再将根与系数关系代入求解;第三问考查椭圆与向量的综合知识,关键在于能够将三点共线转化为向量关系,再利用共线向量基本定理建立等量关系求解.18【2018年江苏卷】如图,在平面直角坐标系中,椭圆C过点,焦点,圆O的直径为(1)求椭圆C及圆O的方程;(2)设直线l与圆O相切于第一象限内的点P若直线l与椭圆C有且只有一个公共点,求点P的坐标;直线l与椭圆C交于两点若的面积为,求直线l的方程【答案】(1)椭圆C的方程为;圆O的方程为(2)点P的坐标为;直线l的方程为详解:解:(1)因为椭圆C的焦点为,可设椭圆C的方程为又点在椭圆C上,所以,解得因此,椭圆C的方程为因为圆O的直径为,所以其方程为(2)设直线l与圆O相切于,则,所以直线l的方程为,即由,消去y,得(*)因为直线l与椭圆C有且只有一个公共点,所以因为,所以因此,点P的坐标为因为三角形OAB的面积为,所以,从而设,由(*)得,所以因为,所以,即,解得舍去),则,因此P的坐标为综上,直线l的方程为点睛:直线与椭圆的交点问题的处理一般有两种处理方法:一是设出点的坐标,运用“设而不求”思想求解;二是设出直线方程,与椭圆方程联立,利用韦达定理求出交点坐标,适用于已知直线与椭圆的一个交点的情况.19【2018年新课标I卷文】设抛物线,点,过点的直线与交于,两点(1)当与轴垂直时,求直线的方程;(2)证明:【答案】(1) y=或 (2)见解析.详解:(1)当l与x轴垂直时,l的方程为x=2,可得M的坐标为(2,2)或(2,2)所以直线BM的方程为y=或(2)当l与x轴垂直时,AB为MN的垂直平分线,所以ABM=ABN当l与x轴不垂直时,设l的方程为,M(x1,y1),N(x2, y2),则x1>0,x2>0由得ky22y4k=0,可知y1+y2=,y1y2=4直线BM,BN的斜率之和为将,及y1+y2,y1y2的表达式代入式分子,可得所以kBM+kBN=0,可知BM,BN的倾斜角互补,所以ABM+ABN综上,ABM=ABN点睛:该题考查的是有关直线与抛物线的问题,涉及到的知识点有直线方程的两点式、直线与抛物线相交的综合问题、关于角的大小用斜率来衡量,在解题的过程中,第一问求直线方程的时候,需要注意方法比较简单,需要注意的就是应该是两个,关于第二问,在做题的时候需要先将特殊情况说明,一般情况下,涉及到直线与曲线相交都需要联立方程组,之后韦达定理写出两根和与两根积,借助于斜率的关系来得到角是相等的结论. 20【2018年全国卷文】已知斜率为的直线与椭圆交于,两点线段的中点为(1)证明:;(2)设为的右焦点,为上一点,且证明:【答案】(1)证明见解析(2)证明见解析(2)由题意得F(1,0)设,则由(1)及题设得,又点P在C上,所以,从而,于是同理所以故点睛:本题主要考查直线与椭圆的位置关系,第一问利用点差法,设而不求可减小计算量,第二问由已知得求出m,得到,再有两点间距离公式表示出,考查了学生的计算能力,难度较大。优质模拟试题21【河南省洛阳市2018届三模】设双曲线的左、右焦点分别为,过作倾斜角为的直线与轴和双曲线的右支分别交于点、,若,则该双曲线的离心率为( )A. 2 B. C. D. 【答案】C详解:,为的中点,由题意可得直线方程为 当时, 设 ,即 即 整理可得 即 解得。故选C点睛:本题考查了直线和双曲线的位置关系,以及直线方程,中点坐标公式,属于中档题22【江西省南昌市2018届三模】“在两条相交直线的一对对顶角内,到这两条直线的距离的积为正常数的点的轨迹是双曲线,其中这两条直线称之为双曲线的渐近线”已知对勾函数是双曲线,它到两渐近线距离的积是,根据此判定定理,可推断此双曲线的渐近线方程是( )A. 与 B. 与 C. 与 D. 与【答案】A【解析】分析:根据定义设为上任一点,逐次验证四个选项,只有A符合.详解:根据定义设为上任一点,对于A选项,则到直线的距离为,到直线的距离为 ,由单一可知可知,则显然 当时,当时,综上,符合定义.同理可知B,C,D不符合定义.故选A.点睛:本题考查双曲线的定义,利用定义验证选项是否符合,是基础题23【江西省重点中学协作体2018届二模】设分别是双曲线的左、右焦点,是的右支上的点,射线平分,过原点作的平行线交于点,若,则双曲线的离心率为( )A. B. C. D. 【答案】B点睛:本题考查利用双曲线的性质求双曲线的离心率,求解时要结合图形进行分析,即使画不出图形(画不出准确的图形),思考时也要联想到图形,当涉及双曲线的顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们的关系,挖掘韹内存联系.求离心率问题应先将用有关的一些量表示出来,再利用其中的一些关系构造出关于的等式,从而解出.24【山东省济南市2018届二模】已知抛物线,过抛物线上两点分别作抛物线的两条切线为两切线的交点为坐标原点若,则直线与的斜率之积为( )A. B. C. D. 【答案】A【解析】分析:先设A,B,再求切线PA,PB方程,再求点P坐标,再根据得到最后求直线与的斜率之积.点睛:(1)本题主要考查抛物线的简单几何性质,考查直线和抛物线的位置关系,意在考查学生对这些基础知识的掌握能力和分析推理能力.(2)解答本题的关键是解题的思路,由于与切线有关,所以一般先设切点,先设A,B,再求切线PA,PB方程,求点P坐标,再根据得到最后求直线与的斜率之积.如果先设点P的坐标,计算量就大一些.25【山东省济南市2018届二模】设椭圆的左、右焦点分别为,点.已知动点在椭圆上,且点不共线,若的周长的最小值为,则椭圆的离心率为( )A. B. C. D. 【答案】A【解析】分析:利用椭圆定义的周长为,结合三点共线时,的最小值为,再利用对称性,可得椭圆的离心率.详解:的周长为,故选:A点睛:椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见有两种方法:求出a,c,代入公式;只需要根据一个条件得到关于a,b,c的齐次式,结合b2a2c2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围)26【南省郑州市2018届三模】已知为椭圆上一个动点,过点作圆的两条切线,切点分别是,则的取值范围为( )A. B. C. D. 【答案】C详解:如图,由题意设,则,设,则,当且仅当,即时等号成立,此时又当点P在椭圆的右顶点时,此时最大,且最大值的取值范围是故选C点睛:圆锥曲线中的最值或范围问题将几何问题和函数、不等式的问题综合在一起,考查学生的综合应用能力,此类题目具有一定的难度解题时首先要根据题意设出相关的参数,把所求的最值表示为该参数的函数,然后根据目标函数的特征选用函数或不等式的知识求解最值即可27【河北省唐山市2018届三模】已知是抛物线上任意一点,是圆上任意一点,则的最小值为( )A. B. 3 C. D. 【答案】D详解:设点的坐标为,由圆的方程可得圆心坐标, ,是圆上任意一点,的最小值为,故选D.点睛:解决解析几何中的最值问题一般有两种方法:一是几何意义,特别是用曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将解析几何中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法求解.28【福建省厦门市2018届三模】若双曲线的渐近线与圆无交点,则的离心率的取值范围为_【答案】点睛:本题主要考查利用双曲线的简单性质求双曲线的离心率,属于中档题.求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.求离心率问题应先将 用有关的一些量表示出来,再利用其中的一些关系构造出关于的不等式,从而求出的范围.本题是利用点到直线的距离大于圆半径构造出关于的不等式,最后解出的范围.29【河南省洛阳市2018届三模】已知抛物线,点,在抛物线上,且横坐标分别为,抛物线上的点在,之间(不包括点,点),过点作直线的垂线,垂足为.(1)求直线斜率的取值范围;(2)求的最大值.【答案】(1);(2).【解析】分析:(1)设,得出关于的函数,根据的范围得出的范围;(2)根据,的方程得出点坐标,根据距离公式计算,得出关于的函数,再根据函数单调性得出最大值详解:(1)由题可知,设,所以 ,故直线斜率的取值范围是.,则 ,当时,当时,故在上单调递增,在上单调递减.故,即的最大值为.点睛:本题考查了抛物线的性质,直线与抛物线的位置关系,考查弦长公式与距离公式的应用,属于中档题30【湖南省益阳市2018届5月统考】已知直线经过抛物线的焦点且与此抛物线交于,两点,直线与抛物线交于,两点在轴的两侧.(1)证明:为定值;(2)求直线的斜率的取值范围;(3)已知函数在()处取得最小值,求线段的中点到点的距离的最小值(用表示).【答案】(1)见解析(2).(3)(或).详解:(1)证明:由题意可得,直线的斜率存在,故可设的方程为(),联立得,则,则为定值.(2)解:由(1)知,则,即.联立得,两点在轴的两侧,即.由及可得或,故直线的斜率的取值范围为.(3)解:设,则,.又,故点的轨迹方程为(或).点睛:本题主要考查抛物线的性质,中点坐标公式,抛物线与直线的位置关系和点的轨迹方程的知识,难度较大。