欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2019大一轮高考总复习文数(北师大版)讲义:第6章 第04节 数列求和 .doc

    • 资源ID:2614129       资源大小:218.50KB        全文页数:8页
    • 资源格式: DOC        下载积分:5金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2019大一轮高考总复习文数(北师大版)讲义:第6章 第04节 数列求和 .doc

    第四节数列求和考点高考试题考查内容核心素养数列求和2017全国卷T1712分求数列的通项公式及前n项和数学运算2016全国卷T1712分求数列的通项公式及前n项和数学运算2014全国卷T1712分求数列的通项公式及前n项和数学运算命题分析本节内容一直是高考的热点,尤其是等差、等比数列的前n项和公式,错位相减法、裂项相消法求和为考查重点,常与函数、方程、不等式等联系综合考查,多以解答题形式出现.1公式法(1)等差数列的前n项和公式:Snna1d;(2)等比数列的前n项和公式:Sn2分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解3裂项相消法(1)把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和(2)裂项时常用的三种变形:;.4错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n项和可用错位相减法求解5倒序相加法如果一个数列an的前n项中与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和即可用倒序相加法求解6并项求和法一个数列的前n项和中,可两两结合求解,则称之为并项求和形如an(1)nf(n)类型,可采用两项合并求解例如,Sn10029929829722212(10099)(9897)(21)5 050.提醒:辨明两个易误点(1)使用裂项相消法求和时,要注意正负项相消时,消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点(2)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解1判断下列结论的正误(正确的打“”,错误的打“”)(1)如果已知等差数列的通项公式,则在求其前n项和时使用公式Sn较为合理()(2)如果数列an为等比数列,且公比不等于1,则其前n项和Sn.()(3)求Sna2a23a3nan之和时只要把上式等号两边同时乘以a即可根据错位相减法求得()(4)如果数列an是周期为k的周期数列,那么SkmmSk(m,k为大于1的正整数)()答案:(1)(2)(3)(4)2(教材习题改编)一个球从100 m高处自由落下,每次着地后又跳回到原高度的一半再落下,当它第10次着地时,经过的路程是()A100200(129)B100100(129)C200(129)D100(129)解析:选A从第1次着地后开始,每次着地所经过的路程构成一个公比q的等比数列所以经过的路程S1002100200(129)3若数列an的通项公式为an2n2n1,则数列an的前n项和为_解析:Sn2n12n2.答案:2n1n224已知数列an的前n项和为Sn且ann2n,则Sn_.解析:Sn12222323n2n,所以2Sn122223324n2n1,得Sn222232nn2n1n2n1,所以Sn(n1)2n12.答案:(n1)2n12分组转化法求和明技法分组转化法求和的常见类型(1)若anbncn,且bn,cn为等差或等比数列,可采用分组转化法求an的前n项和;(2)通项公式为an的数列,其中数列bn,cn是等比数列或等差数列,可采用分组转化法求和提能力【典例】 (2018唐山检测)已知an是等差数列,bn是等比数列,且b23,b39,a1b1,a14b4.(1)求an的通项公式;(2)设cnanbn,求数列cn的前n项和解:(1)等比数列bn的公比为q,则q3,所以b11,b4b3q27.所以bn3n1(n1,2,3,)设等差数列an的公差为d.因为a1b11,a14b427,所以113d27,即d2.所以an2n1(n1,2,3,)(2)由(1)知,an2n1,bn3n1.因此cnanbn2n13n1.从而数列cn的前n项和Sn13(2n1)133n1n2.刷好题已知数列an,bn满足a15,an2an13n1(n2,nN),bnan3n(nN)(1)求数列bn的通项公式;(2)求数列an的前n项和Sn.解:(1)an2an13n1(nN,n2),an3n2(an13n1),bn2bn1(nN,n2)b1a1320,bn0(n2),2,bn是以2为首项,2为公比的等比数列bn22n12n.(2)(1)知anbn3n2n3n,Sn(2222n)(3323n)2n1.错位相减法求和明技法错位相减法求和策略(1)如果数列an是等差数列,bn是等比数列,求数列anbn的前n项和时,可采用错位相减法,一般是和式两边同乘以等比数列bn的公比,然后作差求解(2)在写“Sn”与“qSn”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“SnqSn”的表达式(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解提能力【典例】 (2018太原模拟)已知an是各项均为正数的等比数列,bn是等差数列,且a1b11,b2b32a3,a53b27.(1)求an和bn的通项公式;(2)设cnanbn,nN,求数列cn的前n项和解:(1)设数列an的公比为q,数列bn的公差为d,由题意知q>0.由已知,有消去d,整理得q42q280,解得q24.又因为q>0,所以q2,所以d2.所以数列an的通项公式为an2n1,nN;数列bn的通项公式为bn2n1,nN.(2)由(1)有cn(2n1)2n1,设cn的前n项和为Sn,则Sn120321522(2n3)2n2(2n1)2n1,2Sn121322523(2n3)2n1 (2n1)2n,上述两式相减,得Sn122232n(2n1)2n2n13(2n1)2n(2n3)2n3,所以,Sn(2n3)2n3,nN.母题变式 若cn,如何求解?解:an2n1,nN,bn2n1,nN.cn.设数列cn的前n项和为Sn,则Snc1c2c3cnSn上述两式相减,得Sn12()12(1)33.Sn6,nN.刷好题(2018漳州质检)已知数列an中,a13,a25,且an1是等比数列(1)求数列an的通项公式;(2)若bnnan,求数列bn的前n项和Tn.解:(1)an1是等比数列且a112,a214,2,an122n12n,an2n1.(2)bnnann2nn,故Tnb1b2b3bn(2222323n2n)(123n)令T2222323n2n,则2T22223324n2n1,两式相减,得T222232nn2n1n2n1,T2(12n)n2n12(n1)2n1.123n,Tn(n1)2n1.裂项相消法求和析考情裂项法求和在高考中经常考查,多以解答题的形式考查,并且往往出现在第二问,难度属中低档提能力命题点1:an型裂项求和【典例1】 数列an的前n项和为Sn2n12,数列bn是首项为a1,公差为d(d0)的等差数列,且b1,b3,b9成等比数列(1)求数列an与bn的通项公式;(2)若cn(nN),求数列cn的前n项和Tn.解:(1)当n2时,anSnSn12n12n2n,又a1S12112221,也满足上式,所以数列an的通项公式为an2n.则b1a12.由b1,b3,b9成等比数列,得(22d)22(28d),解得d0(舍去)或d2,所以数列bn的通项公式为bn2n.(2)由(1)得cn,所以数列cn的前n项和Tn11. 命题点2:形如an的数列求和【典例2】 (2018潍坊模拟)正项数列an的前n项和Sn满足:S(n2n1)Sn(n2n)0.(1)求数列an的通项公式an;(2)令bn,数列bn的前n项和为Tn.证明:对于任意的nN,都有Tn<.(1)解:由S(n2n1)Sn(n2n)0,得Sn(n2n)(Sn1)0.由于an是正项数列,所以Sn>0,Snn2n.于是a1S12,当n2时,anSnSn1n2n(n1)2(n1)2n.又a12也满足上式,综上,数列an的通项公式为an2n.(2)证明:由于an2n,故bn.Tn<.悟技法利用裂项相消法求和的注意事项(1)裂项相消法求和就是将数列中的每一项裂成两项或多项,使这些裂开的项出现有规律的相互抵消,要注意消去了哪些项,保留了哪些项,从而达到求和的目的(2)消项规律:消项后前边剩几项,后边就剩几项,前边剩第几项,后边就剩倒数第几项刷好题1(2018福州质检)已知函数f(x)xa的图像过点(4,2),令an,nN.记数列an的前n项和为Sn,则S2 016()A1B1C1D1解析:选C由f(4)2可得4a2,解得a,则f(x)x.an,S2 016a1a2a3a2 016()()()()()1.2(2018沈阳质检)已知数列an是递增的等比数列,且a1a49,a2a38.(1)求数列an的通项公式;(2)设Sn为数列an的前n项和,bn,求数列bn的前n项和Tn.解:(1)由题设知a1a4a2a38,又a1a49,可解得或(舍去)设等比数列an的公比为q,由a4a1q3得q2,故ana1qn12n1,nN.(2)Sn2n1,又bn,所以Tnb1b2bn1,nN.

    注意事项

    本文(2019大一轮高考总复习文数(北师大版)讲义:第6章 第04节 数列求和 .doc)为本站会员(荣***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开