2022年时间序列期末试题B卷 .pdf
第 1 页系名_班级_姓名_学号_密封线内不答题成 都 信 息 工 程 学 院 考 试 试 卷20122013 学年第 2 学期课程名称:金融时间序列分析班级:金保 111本 01、02、03 班试卷形式:开卷闭卷 一、判断题(每题1 分,正确的在括号内打,错误的在括号内打,共15 分)1模型检验即是平稳性检验() 。2模型方程的检验实质就是残差序列检验() 。3矩法估计需要知道总体的分布() 。4ADF检验中:原假设序列是非平稳的() 。5最优模型确定准则:AIC 值越小、 SC值越大,说明模型越优() 。6对具有曲线增长趋势的序列,一阶差分可剔除曲线趋势() 。7严平稳序列与宽平稳时序区分主要表现在定义角度不同() 。8某时序具有指数曲线增长趋势时,需做对数变换, 才能剔除曲线趋势() 。9时间序列平稳性判断方法中 ADF 检验优于序时图法和自相关图检验法() 。10时间序列的随机性分析即是长期趋势分析() 。11ARMA (p,q )模型是 ARIMA(p,d,q) 模型的特例() 。12若某序列的均值和方差随时间的平移而变化,则该序列是非平稳的() 。13. MA(2) 模型的 3 阶偏自相关系数等于0() 。14ARMA(p,q)模型自相关系数p 阶截尾,偏自相关系数拖尾() 。15 MA(q)模型平稳的充分必要条件是关于后移算子B的 q 阶移动自回归系数多项式根的绝对值均在单位圆内() 。二、填空题。(每空 2 分,共 20 分)1tX满足 ARMA (1,2 )模型即:tX0.43+0.341tX+t0.81t0.22t,则均值,1(即一阶移动均值项系数)。2设 xt为一时间序列,B为延迟算子,则B2Xt= 。3在序列y 的 view 数据窗,选择功能键,可对序列y 做 ADF检验。4若某平稳时序的自相关图拖尾,偏相关图1 阶截尾,则该拟合模型。试题一二三四五六总分得分名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 1 页,共 9 页 - - - - - - - - - 第 2 页5. 已知 AR (1) 模型:tX+0.81tXt,t服从 N(0,0.36), 则一阶自相关系数,方差。6用延迟算子表示中心化的AR (p)模型。7差分运算的实质是使用方式,提取确定性信息。8. ARIMA(0,1,0)称为模型。三、问答题。(共 10 分)1. 平稳时间序列的统计特征。2简述时域分析法分析步骤。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 2 页,共 9 页 - - - - - - - - - 第 3 页系名_班级_姓名_学号_密封线内不答题四、计算题。(40 分)1. (10 分)已知ARMA (1,1)模型即:tX0.61tX+t0.31t,其中,t是白噪声序列,试求:(1)模型的平稳可逆性; (2)将该模型等价表示为无穷阶MA模型形式。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 3 页,共 9 页 - - - - - - - - - 第 4 页2. (10 分)设有AR (2)过程:(10.5B ) (10.3B)Xt=t,其中 ,t是白噪声序列,试求k(其中, k=1,2 ) 。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 4 页,共 9 页 - - - - - - - - - 第 5 页系名_班级_姓名_学号_密封线内不答题3. (10 分)某时间序列Yt有 500 个观测值,经过计算,样本自相关系数和偏自相关系数的前 10 个值如下表:试(1)对 Yt所属模型进行初步识别;(2)给出该模型的参数估计;(3)写出模型方程; (kk:偏自相关系数;k:自相关系数)k kkkk kkk1 -0.47 -0.47 6 0.04 0.02 2 0.06 -0.21 7 -0.04 -0.01 3 -0.07 -0.18 8 0.06 -0.06 4 0.04 -0.10 9 -0.05 0.01 5 0.00 -0.05 10 0.01 0.00 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 5 页,共 9 页 - - - - - - - - - 第 6 页4.(10分) 已知某ARMA(2,1)模型为 :tX=0.81tX0.52tX+t0.31t, 给定3tX=1,Xt-2=2, Xt-1=2.5, Xt=0.6 ;t=-0.28,1t=0.4, 2t=0。求)2(?),1(?ttXX。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 6 页,共 9 页 - - - - - - - - - 第 7 页系名_班级_姓名_学号_密封线内不答题五、综合分析题。 ( 15 分)1. (5 分)序列 yt的时间序列图和ADF检验结果如下:问:该序列是否平稳,为什么?(2)要使其平稳化,应对该序列进行哪些差分处理;名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 7 页,共 9 页 - - - - - - - - - 第 8 页2. (5 分)对某序列yt 做参数估计,结果如表2 示:Variable Coefficient Std. Error t-Statistic Prob. AR(1) 0.907855 0.044842 20.24545 0.0000 MA(1) -0.934043 0.038226 -24.4347 0.0000 R-squared 0.318165 Mean dependent var 4.983333 Adjusted R-squared 0.298111 S.D. dependent var 8.970762 S.E. of regression 7.515597 Akaike info criterion 6.925791 Sum squared resid 1920.463 Schwarz criterion 7.013764 Log likelihood -122.6642 F-statistic 11.86545 Durbin-Watson stat 2.041612 Prob(F-statistic) 0.000340 Inverted MA Roots -.71 (1) 写出模型; (2 )模型的参数检验是否通过?为什么?名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 8 页,共 9 页 - - - - - - - - - 第 9 页系名_班级_姓名_学号_密封线内不答题3. (5 分)某序列的残差序列的自相关图和偏自相关图如下:(1)序列 yt 残差检验的基本原理; (2)有何结论?为什么?名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 9 页,共 9 页 - - - - - - - - -