2018年高考数学(人教文科)总复习(福建专用)配套训练:课时规范练35 .docx
课时规范练35空间几何体的结构及其三视图和直观图基础巩固组1.如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱2.某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.1B.2C.3D.23.(2017辽宁抚顺重点校一模,文9)已知一几何体的三视图如图所示,俯视图由一个直角三角形与一个半圆组成,则该几何体的体积为()A.6+12B.6+24C.12+12D.24+12导学号241907654.(2017全国,文6)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90B.63C.42D.365.如图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为12,则该几何体的俯视图可以是()6.沿一个正方体三个面的对角线截得的几何体如图所示,则该几何体的侧(左)视图为()7.如图,在正四棱柱ABCD-A1B1C1D1中,点P是平面A1B1C1D1内一点,则三棱锥P-BCD的正视图与侧视图的面积之比为()A.11B.21C.23D.328.(2017北京,文6)某三棱锥的三视图如图所示,则该三棱锥的体积为()A.60B.30C.20D.10导学号241907669.如图,三棱锥V-ABC的底面为正三角形,侧面VAC与底面垂直,且VA=VC,已知其正视图的面积为23,则其侧视图的面积为.10.给出下列命题:在正方体上任意选择4个不共面的顶点,它们可能是正四面体的4个顶点;底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥;若有两个侧面垂直于底面,则该四棱柱为直四棱柱.其中正确命题的序号是.11.已知一个正三棱柱的所有棱长均相等,其侧(左)视图如图所示,则此三棱柱正(主)视图的面积为.12.如图,正方形OABC的边长为1 cm,它是水平放置的一个平面图形的直观图,则原图形的周长为.综合提升组13.正方体ABCD-A1B1C1D1中,E为棱BB1的中点(如图),用过点A,E,C1的平面截去该正方体的上半部分,则剩余几何体的侧视图为()14.如图甲,将一个正三棱柱ABC-DEF截去一个三棱锥A-BCD,得到几何体BCDEF如图乙,则该几何体的正视图(主视图)是()导学号2419076715.(2017辽宁葫芦岛一模,文5)九章算术是我国古代数学经典名著,它在几何学中的研究比西方早1千年,在九章算术中,将四个面均为直角三角形的四面体称为鳖臑,已知某“鳖臑”的三视图如图所示,则该鳖臑的外接球的表面积为()A.200B.50C.100D.1252316.如图所示,在直三棱柱ABC-A1B1C1中,ABC为直角三角形,ACB=90,AC=4,BC=CC1=3.P是BC1上一动点,若一小虫沿其表面从点A1经过点P爬行到点C,则其爬行路程的最小值为.创新应用组17.(2017山西晋中一模)某几何体的三视图如图所示,则该几何体的体积是()A.16B.20C.52D.60导学号2419076818.如图,E,F分别为正方体ABCD-A1B1C1D1的面ADD1A1,面BCC1B1的中心,则四边形BFD1E在该正方体的面上的正投影可能是.(填序号)答案:1.B由所给三视图可知该几何体是一个三棱柱(如图).2.C四棱锥的直观图如图所示.由三视图可知,SB平面ABCD,SD是四棱锥最长的棱,SD=SB2+BD2=SB2+AB2+BC2=3.3.A由三视图可知几何体为半圆柱与直三棱柱的组合体,V=12223+13243=6+12,故选A.4.B由题意,可知该几何体由两部分组成,这两部分分别是高为6的圆柱截去一半后的图形和高为4的圆柱,且这两个圆柱的底面圆半径都为3,故其体积为V=12326+324=63,故选B.5.C该几何体的体积为12,且由题意知高为1,故底面积为12,结合选项知选C.6.B给几何体的各顶点标上字母,如图.A,E在投影面上的投影重合,C,G在投影面上的投影重合,几何体在投影面上的投影及把投影面展平后的情形如图所示,故正确选项为B(而不是A).图图7.A根据题意,三棱锥P-BCD的正视图是三角形,且底边长为正四棱柱的底面边长、高为正四棱柱的高;侧视图是三角形,且底边长为正四棱柱的底面边长,高为正四棱柱的高.故三棱锥P-BCD的正视图与侧视图的面积之比为11.8.D由该几何体的三视图可得它的直观图为长、宽、高分别为5,3,4的长方体中的三棱锥A-BCD,如图所示.故该几何体的体积是V=1312534=10.故选D.9.33设三棱锥V-ABC的底面边长为a,侧面VAC的边AC上的高为h,则ah=43,其侧视图是由底面三角形ABC的边AC上的高与侧面三角形VAC的边AC上的高组成的直角三角形,其面积为1232ah=123243=33.10.正确,正四面体是每个面都是等边三角形的四面体,如正方体ABCD-A1B1C1D1中的四面体ACB1D1;错误,如图所示,底面三角形ABC为等边三角形,令AB=VB=VC=BC=AC,则VBC为等边三角形,VAB和VCA均为等腰三角形,但不能判定其为正三棱锥;错误,必须是相邻的两个侧面.11.23由题意可得正(主)视图是一个矩形,其中一边的长是侧(左)视图中三角形的高,另一边的长是棱长.因为侧(左)视图中三角形的边长为2,所以高为3,所以正(主)视图的面积为23.12.8 cm将直观图还原为平面图形,如图.在还原后的图形中,OB=22 cm,AB=12+(22)2=3(cm),于是周长为23+21=8(cm).13.C过点A,E,C1的截面为AEC1F,如图,则剩余几何体的侧视图为选项C中的图形.故选C.14.C由于三棱柱为正三棱柱,故平面ADEB平面DEF,DEF是等边三角形,所以CD在投影面上的投影为AB的中点与D的连线,CD的投影与底面不垂直,故选C.15.B由三视图复原几何体,几何体是底面为直角三角形,一条侧棱垂直底面直角顶点的三棱锥.扩展为长方体,它的对角线的长为球的直径,直径为9+16+25=52,该三棱锥的外接球的表面积为45222=50,故选B.16.73由题意知,把面BB1C1C沿BB1展开与面AA1B1B在一个平面上,如图所示,连接A1C即可,则A1,P,C三点共线时,CP+PA1最小,ACB=90,AC=4,BC=C1C=3,A1B1=AB=42+32=5,A1C1=5+3=8,A1C=82+32=73.故CP+PA1的最小值为73.17.B由题意,该几何体可看作三棱柱与三棱锥的组合体,如图,体积为12342+13123242=20.故选B.18.由正投影的定义,四边形BFD1E在面BB1C1C上的正投影是图;在面DCC1D1上的正投影是图;其在面ABCD上的正投影也是图.