2019版高考数学(文)培优增分一轮全国经典版增分练:第10章 概率 10-2a .doc
板块四模拟演练提能增分A级基础达标1袋中有2个白球,2个黑球,若从中任意摸出2个,则至少摸出1个黑球的概率是()A. B. C. D.答案B解析该试验中会出现(白1,白2),(白1,黑1),(白1,黑2),(白2,黑1),(白2,黑2)和(黑1,黑2)共6种等可能的结果,事件“至少摸出1个黑球”所含有的基本事件为(白1,黑1),(白1,黑2),(白2,黑1),(白2,黑2)和(黑1,黑2)共5种,据古典概型概率公式,得事件“至少摸出1个黑球”的概率是.2从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于()A. B. C. D.答案D解析在正六边形中,6个顶点选取4个,种数为15.选取的4点能构成矩形的,只有对边的4个顶点(例如AB与DE),共有3种,所求概率为.3从2男3女共5名同学中任选2名(每名同学被选中的机会均等),这2名都是男生或都是女生的概率等于()A. B. C. D.答案A解析设2名男生为A,B,3名女生为a,b,c,则从5名同学中任取2名的方法有(A,B),(A,a),(A,b),(A,c),(B,a),(B,b),(B,c),(a,b),(a,c),(b,c),共10种,而这2名同学刚好是一男一女的有(A,a),(A,b),(A,c),(B,a),(B,b),(B,c),共6种,故所求的概率P1.4为了纪念抗日战争胜利70周年,从甲、乙、丙、丁、戊5名候选民警中选2名作为阅兵安保人员,为阅兵提供安保服务,则甲、乙、丙中有2名被选中的概率为()A. B. C. D.答案A解析从甲、乙、丙、丁、戊5人中选2人的所有情况为:甲乙、甲丙、甲丁、甲戊、乙丙、乙丁、乙戊、丙丁、丙戊、丁戊,共10种,其中有甲、乙、丙中2人的有甲乙、甲丙、乙丙3种,所以P.52018梅州质检如图所示方格,在每一个方格中填入一个数字,数字可以是1,2,3,4中的任何一个,允许重复则填入A方格的数字大于B方格的数字的概率为()A. B. C. D.答案D解析只考虑A,B两个方格的排法不考虑大小,A,B两个方格有4416(种)排法要使填入A方格的数字大于B方格的数字,则从1,2,3,4中选2个数字,大的放入A格,小的放入B格,有(4,3),(4,2),(4,1),(3,2),(3,1),(2,1),共6种,故填入A方格的数字大于B方格的数字的概率为.选D.62018湖北模拟随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率记为p1,点数之和大于5的概率记为p2,点数之和为偶数的概率记为p3,则()Ap1<p2<p3 Bp2<p1<p3Cp1<p3<p2 Dp3<p1<p2答案C解析总的基本事件个数为36,向上的点数之和不超过5的有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,1),(3,2),(4,1),共10个,则向上的点数之和不超过5的概率p1;向上的点数之和大于5的概率p21;向上的点数之和为偶数与向上的点数之和为奇数的个数相等,故向上的点数之和为偶数的概率p3.即p1<p3<p2.故选C.72018武汉模拟设m,n分别是先后抛掷一枚骰子得到的点数,则在先后两次出现的点数中有5的条件下,方程x2mxn0有实根的概率为()A. B. C. D.答案C解析先后两次出现的点数中有5的情况有:(1,5),(2,5),(3,5),(4,5),(5,5),(6,5),(5,1),(5,2),(5,3),(5,4),(5,6),共11种其中使方程x2mxn0有实根的情况有:(5,5),(6,5),(5,1),(5,2),(5,3),(5,4),(5,6),共7种故所求概率为.82018四川模拟从2,3,8,9中任取两个不同的数字,分别记为a,b,则logab为整数的概率是_答案解析从2,3,8,9中任取两个不同的数字,(a,b)的所有可能结果有(2,3),(2,8),(2,9),(3,2),(3,8),(3,9),(8,2),(8,3),(8,9),(9,2),(9,3),(9,8),共12种,其中log283,log392为整数,所以logab为整数的概率为.92018合肥模拟从2名男生和2名女生中任意选择两人在星期六、星期日参加某公益活动,每天一人,则星期六安排一名男生、星期日安排一名女生的概率为_答案解析设2名男生记为A1,A2,2名女生记为B1,B2,任意选择两人在星期六、星期日参加某公益活动,共有A1A2,A1B1,A1B2,A2B1,A2B2,B1B2,A2A1,B1A1,B2A1,B1A2,B2A2,B2B1,12种情况,而星期六安排一名男生、星期日安排一名女生共有A1B1,A1B2,A2B1,A2B2,4种情况,则发生的概率为P.102018河南省八市联考已知函数f(x)2x24ax2b2,若a4,6,8,b3,5,7,则该函数有两个零点的概率为_答案解析要使函数f(x)2x24ax2b2有两个零点,即方程x22axb20要有两个实根,则4a24b2>0,即a>b,又a4,6,8,b3,5,7,a,b的取法共有339种,其中满足a>b的取法有(4,3),(6,3),(6,5),(8,3),(8,5),(8,7),共6种,所以所求的概率为.B级知能提升12018南京模拟一个三位数的百位、十位、个位上的数字依次为a,b,c,当且仅当a>b,b<c时称为“凹数”(如213,312)等若a,b,c1,2,3,4,且a,b,c互不相同,则这个三位数为“凹数”的概率是()A. B. C. D.答案C解析由1,2,3组成的三位数有123,132,213,231,312,321,共6个;由1,2,4组成的三位数有124,142,214,241,412,421,共6个;由1,3,4组成的三位数有134,143,314,341,413,431,共6个;由2,3,4组成的三位数有234,243,324,342,423,432,共6个所以共有666624个三位数当b1时,有214,213,314,412,312,413,共6个“凹数”;当b2时,有324,423,共2个“凹数”故这个三位数为“凹数”的概率P.22018安徽六校联考连续投掷两次骰子得到的点数分别为m,n,向量a(m,n)与向量b(1,0)的夹角记为,则的概率为()A. B. C. D.答案B解析cosa,b,<<1,n<m.又满足n<m的骰子的点数有(2,1),(3,1),(3,2),(6,3),(6,4),(6,5),共15个故所求概率为P.32018武汉调研某同学同时掷两颗骰子,得到点数分别为a,b,则双曲线1的离心率e>的概率是_答案解析由e>,得b>2a.当a1时,b3,4,5,6四种情况;当a2时,b5,6两种情况,总共有6种情况又同时掷两颗骰子,得到的点数(a,b)共有36种结果所求事件的概率P.4按照国家环保部发布的新修订的环境空气质量标准,规定:PM2.5的年平均浓度不得超过35微克/立方米国家环保部门在2017年10月1日到2018年1月30日这120天对全国的PM2.5平均浓度的监测数据统计如下:组别PM2.5浓度(微克/立方米)频数/天第一组(0,3532第二组(35,7564第三组(75,11516第四组115以上8(1)在这120天中抽取30天的数据做进一步分析,第一组应抽取多少天?(2)在(1)中所抽取的样本PM2.5的平均浓度超过75微克/立方米的若干天中,随机抽取2天,求恰好有一天平均浓度超过115微克/立方米的概率解(1)在这120天中抽取30天,应采取分层抽样,第一组应抽取328天;第二组应抽取6416天;第三组应抽取164天;第四组应抽取82天(2)设PM2.5的平均浓度在(75,115内的4天记为A1,A2,A3,A4,PM2.5的平均浓度在115以上的2天记为B1,B2.所以从这6天中任取2天的情况有A1A2,A1A3,A1A4,A1B1,A1B2,A2A3,A2A4,A2B1,A2B2,A3A4,A3B1,A3B2,A4B1,A4B2,B1B2,共15种记“恰好有一天平均浓度超过115微克/立方米”为事件A,其中符合条件的情况有A1B1,A1B2,A2B1,A2B2,A3B1,A3B2,A4B1,A4B2,共8种,故所求事件A的概率P(A).52018兰州双基测试一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同随机有放回地抽取3次,每次抽取一张,将抽取的卡片上的数字依次记为a,b,c.(1)求“抽取的卡片上的数字满足abc”的概率;(2)求“抽取的卡片上的数字a,b,c不完全相同”的概率解(1)由题意,(a,b,c)所有可能的结果为:(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),(3,3,3),共27种设“抽取的卡片上的数字满足abc”为事件A,则事件A包括(1,1,2),(1,2,3),(2,1,3),共3种,所以P(A),因此,“抽取的卡片上的数字满足abc”的概率为.(2)设“抽取的卡片上的数字a,b,c不完全相同”为事件B,则事件包括(1,1,1),(2,2,2),(3,3,3),共3种,所以P(B)1P()1,因此,“抽取的卡片上的数字a,b,c不完全相同”的概率为.