2018版高中数学人教B版选修2-2学案:2章末复习课 .docx
-
资源ID:2616996
资源大小:613.67KB
全文页数:6页
- 资源格式: DOCX
下载积分:5金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2018版高中数学人教B版选修2-2学案:2章末复习课 .docx
题型一合情推理与演绎推理1归纳和类比都是合情推理,前者是由特殊到一般,部分到整体的推理,后者是由特殊到特殊的推理,但二者都能由已知推测未知,都能用于猜想,推理的结论不一定为真,有待进一步证明2演绎推理与合情推理不同,它是由一般到特殊的推理,是数学中证明的基本推理形式,也是公理化体系所采用的推理形式另一方面,合情推理与演绎推理又是相辅相成的,前者是后者的前提,后者论证前者的可靠性例1(1)有一个奇数列1,3,5,7,9,现在进行如下分组:第一组含一个数1;第二组含两个数3,5;第三组含三个数7,9,11;第四组含四个数13,15,17,19;试观察每组内各数之和f(n)(nN)与组的编号数n的关系式为_(2)在平面几何中,对于RtABC,ACBC,设ABc,ACb,BCa,则a2b2c2;cos2Acos2B1;RtABC的外接圆半径为r.把上面的结论类比到空间写出相类似的结论;如果你能证明,写出证明过程;如果在直角三角形中你还发现了异于上面的结论,试试看能否类比到空间?(1)答案f(n)n3解析由于113,35823,79112733,131517196443,猜想第n组内各数之和f(n)与组的编号数n的关系式为f(n)n3.(2)解选取3个侧面两两垂直的四面体作为直角三角形的类比对象设3个两两垂直的侧面的面积分别为S1,S2,S3,底面面积为S,则SSSS2.设3个两两垂直的侧面与底面所成的角分别为,则cos2cos2cos21.设3个两两垂直的侧面形成的侧棱长分别为a,b,c,则这个四面体的外接球的半径为R.反思与感悟(1)归纳推理中有很大一部分题目是数列内容,通过观察给定的规律,得到一些简单数列的通项公式是数列中的常见方法(2)类比推理重在考查观察和比较的能力,题目一般情况下较为新颖,也有一定的探索性跟踪训练1(1)下列推理是归纳推理的是_,是类比推理的是_A、B为定点,若动点P满足|PA|PB|2a>|AB|,则点P的轨迹是椭圆;由a11,an13an1,求出S1,S2,S3,猜想出数列的通项an和Sn的表达式;由圆x2y21的面积Sr2,猜想出椭圆的面积Sab;科学家利用鱼的沉浮原理制造潜艇答案(2)设等差数列an的前n项和为Sn,则S4,S8S4,S12S8,S16S12成等差数列类比以上结论有:设等比数列bn的前n项积为Tn, 则T4,_,_,成等比数列答案解析等差数列类比于等比数列时,和类比于积,减法类比于除法,可得类比结论为:设等比数列bn的前n项积为Tn,则T4,成等比数列题型二综合法与分析法综合法和分析法是直接证明中的两种最基本的证明方法,但两种证明方法思路截然相反,分析法既可用于寻找解题思路,也可以是完整的证明过程,分析法与综合法可相互转换,相互渗透,要充分利用这一辩证关系,在解题中综合法和分析法联合运用,转换解题思路,增加解题途径一般以分析法为主寻求解题思路,再用综合法有条理地表示证明过程例2用综合法和分析法证明已知(0,),求证:2sin 2.证明(分析法)要证明2sin 2成立只要证明4sin cos .(0,),sin >0.只要证明4cos .上式可变形为44(1cos )1cos >0,4(1cos )2 4,当且仅当cos ,即时取等号44(1cos )成立不等式2sin 2成立(综合法)4(1cos )4,(1cos >0,当且仅当cos ,即时取等号)4cos .(0,),sin >0.4sin cos .2sin 2.跟踪训练2求证:2cos().证明sin(2)2cos()sin sin()2cos()sin sin()cos cos()sin 2cos()sin sin()cos cos()sin sin()sin ,两边同除以sin 得2cos().题型三反证法反证法是一种间接证明命题的方法,它从命题结论的反面出发引出矛盾,从而肯定命题的结论反证法的理论基础是互为逆否命题的等价性,从逻辑角度看,命题:“若p则q”的否定是“若p则綈q”,由此进行推理,如果发生矛盾,那么就说明“若p则綈q”为假,从而可以导出“若p则q”为真,从而达到证明的目的例3若x,y都是正实数,且xy>2,求证:<2或<2中至少有一个成立证明假设<2和<2都不成立,则有2和2同时成立因为x>0且y>0,所以1x2y且1y2x,两式相加,得2xy2x2y,所以xy2.这与已知xy>2矛盾故<2与<2至少有一个成立反思与感悟反证法常用于直接证明困难或以否定形式出现的命题;涉及“都是”“都不是”“至少”“至多”等形式的命题时,也常用反证法跟踪训练3已知:ac2(bd)求证:方程x2axb0与方程x2cxd0中至少有一个方程有实数根证明假设两方程都没有实数根,则1a24b<0与2c24d<0,有a2c2<4(bd),而a2c22ac,从而有4(bd)>2ac,即ac<2(bd),与已知矛盾,故原命题成立题型四数学归纳法数学归纳法是一种逻辑推理,它的第一步称为奠基步骤,是论证的基础保证,即通过验证落实传递的起点,这个基础必须真实可靠;它的第二步称为递推步骤,是命题具有后继传递性的保证,两步合在一起为完全归纳步骤,这两步缺一不可,第二步中证明“当nk1时结论正确”的过程中,必须用“归纳假设”,否则就是错误的例4用数学归纳法证明当nN时,1n2(n1)3(n2)(n2)3(n1)2n1n(n1)(n2)证明(1)当n1时,1123,结论成立(2)假设nk时结论成立,即1k2(k1)3(k2)(k2)3(k1)2k1k(k1)(k2)当nk1时,则1(k1)2k3(k1)(k1)3k2(k1)11k2(k1)(k1)2k1123k(k1)k(k1)(k2)(k1)(k2)(k1)(k2)(k3),即当nk1时结论也成立综合上述,可知结论对一切nN都成立跟踪训练4数列an满足:a11,an1an1.(1)写出a2,a3,a4.(2)求数列an的通项公式解(1)因为a11,an1an1,所以a2a111.a3a211.a4a311.(2)证明方法一猜想an.下面用数学归纳法证明,当n1时,a11,满足上式,显然成立;假设当nk时ak,那么当nk1时,ak1ak111满足上式,即当nk1时猜想也成立,由可知,对于nN都有an.方法二因为an1an1,所以an12an12,即an12(an2),设bnan2,则bn1bn,即bn是以b11,为公比的等比数列,所以bnb1qn1,所以anbn2.呈重点、现规律1归纳和类比都是合情推理,前者是由特殊到一般,部分到整体的推理,后者是由特殊到特殊的推理,但二者都能由已知推测未知,都能用于猜想,推理的结论不一定为真,有待进一步证明2演绎推理与合情推理不同,是由一般到特殊的推理,是数学中证明的基本推理形式也是公理化体系所采用的推理形式,另一方面,合情推理与演绎推理又是相辅相成的,前者是后者的前提,后者论证前者的可靠性3直接证明和间接证明是数学证明的两类基本证明方法直接证明的两类基本方法是综合法和分析法:综合法是从已知条件推导出结论的证明方法;分析法是由结论追溯到条件的证明方法,在解决数学问题时,常把它们结合起来使用,间接证法的一种方法是反证法,反证法是从结论反面成立出发,推出矛盾的证明方法4数学归纳法主要用于解决与自然数有关的数学问题证明时,它的两个步骤缺一不可它的第一步(归纳奠基)nn0时结论成立第二步(归纳递推)假设nk时,结论成立,推得nk1时结论也成立数学归纳法是在可靠的基础上,利用命题自身具有的传递性,运用有限的步骤(两步)证明出无限的命题成立