欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2018版高中数学人教B版选修2-1学案:3.2.3 直线与平面的夹角--3.2.4 二面角及其度量 .docx

    • 资源ID:2617980       资源大小:415KB        全文页数:9页
    • 资源格式: DOCX        下载积分:5金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2018版高中数学人教B版选修2-1学案:3.2.3 直线与平面的夹角--3.2.4 二面角及其度量 .docx

    3.2.3直线与平面的夹角3.2.4二面角及其度量学习目标1.理解斜线和平面所成的角的定义,体会夹角定义的唯一性、合理性.2.会求直线与平面的夹角.3.掌握二面角的概念,二面角的平面角的定义,会找一些简单图形中的二面角的平面角.4.掌握求二面角的基本方法、步骤知识点一直线与平面所成的角思考斜线和平面所成的角具有什么性质?梳理(1)直线与平面所成的角(2)最小角定理知识点二二面角及理解思考如何找二面角的平面角?梳理(1)二面角的概念二面角的定义:平面内的一条直线把平面分成两部分,其中的每一部分都叫做半平面从一条直线出发的_所组成的图形叫做二面角如图所示,其中,直线l叫做二面角的_,每个半平面叫做二面角的_,如图中的,.二面角的记法:棱为l,两个面分别为,的二面角,记作l.如图,A,B,二面角也可以记作AlB,也可记作2l.二面角的平面角:在二面角l的棱上任取一点O,在两半平面内分别作射线OAl,OBl,则AOB叫做二面角l的平面角,如图所示由等角定理知,这个平面角与点O在l上的位置无关直二面角:平面角是直角的二面角叫做直二面角二面角的范围是0,180 (2)用向量夹角来确定二面角性质及其度量的方法如图,分别在二面角l的面,内,并沿,延伸的方向,作向量n1l,n2l,则n1,n2等于该二面角的平面角如图,设m1,m2,则角m1,m2与该二面角大小相等或互补类型一求直线与平面的夹角例1已知正三棱柱ABCA1B1C1的底面边长为a,侧棱长为a,求AC1与侧面ABB1A1所成的角反思与感悟用向量法求线面角的一般步骤是先利用图形的几何特征建立适当的空间直角坐标系,再用向量的有关知识求解线面角方法二给出了用向量法求线面角的常用方法,即先求平面法向量与斜线夹角,再进行换算跟踪训练1如图所示,已知直角梯形ABCD,其中ABBC2AD,AS平面ABCD,ADBC,ABBC,且ASAB.求直线SC与底面ABCD的夹角的余弦值类型二求二面角例2在底面为平行四边形的四棱锥PABCD中,ABAC,PA平面ABCD,且PAAB,E是PD的中点,求平面EAC与平面ABCD的夹角反思与感悟(1)当空间直角坐标系容易建立(有特殊的位置关系)时,用向量法求解二面角无需作出二面角的平面角只需求出平面的法向量,经过简单的运算即可求出,有时不易判断两法向量的夹角的大小就是二面角的大小(相等或互补),但我们可以根据图形观察得到结论,因为二面角是钝二面角还是锐二面角一般是明显的(2)注意法向量的方向:一进一出,二面角等于法向量夹角;同进同出,二面角等于法向量夹角的补角跟踪训练2若PA平面ABC,ACBC,PAAC1,BC,求锐二面角APBC的余弦值1在三棱柱ABCA1B1C1中,底面是棱长为1的正三角形,侧棱AA1底面ABC,点D在棱BB1上,且BD1,若AD与平面AA1C1C所成的角为,则sin 的值是()A. B. C. D.2已知两平面的法向量分别为m(0,1,0),n(0,1,1),则两平面所成的二面角为_3正四面体ABCD中棱AB与底面BCD所成角的余弦值为_4已知点A(1,0,0),B(0,2,0),C(0,0,3),则平面ABC与平面xOy所成锐二面角的余弦值为_1线面角可以利用定义在直角三角形中解决2线面角的向量求法:设直线的方向向量为a,平面的法向量为n,直线与平面所成的角为,则sin |cosa,n|.提醒:完成作业第三章3.2.33.2.4答案精析问题导学知识点一思考斜线和它在平面内的射影所成的角,是斜线和这个平面内所有直线所成角中最小的角,且cos cos 1cos 2.(如图)梳理(1)900射影(2)cos cos 1cos 2射影最小的角知识点二思考(1)定义法由二面角的平面角的定义可知平面角的顶点可根据具体题目选择棱上一个特殊点,求解用到的是解三角形的有关知识(2)垂面法作(找)一个与棱垂直的平面,与两面的交线就构成了平面角(3)三垂线定理(或逆定理)作平面角,这种方法最为重要,其作法与三垂线定理(或逆定理)的应用步骤一致梳理(1)两个半平面棱面题型探究例1解建立如图所示的空间直角坐标系,则A(0,0,0),B(0,a,0),A1(0,0,a),C1,方法一取A1B1的中点M,则M(0,a),连接AM,MC1,有(a,0,0),(0,a,0),(0,0,a)0,0,则MC1AB,MC1AA1.又ABAA1A,MC1平面ABB1A1.C1AM是AC1与侧面ABB1A1所成的角由于,(0,a),02a2,| a,| a,cos,.,0,180,30,又直线与平面所成的角在0,90范围内,AC1与侧面ABB1A1所成的角为30.方法二(0,a,0),(0,0,a),.设侧面ABB1A1的法向量为n(,y,z),n0且n0.ay0且az0.yz0.故n(,0,0)cos,n,|cos,n|.又直线与平面所成的角在0,90范围内,AC1与侧面ABB1A1所成的角为30.跟踪训练1解由题设条件知,以点A为坐标原点,分别以AD,AB,AS所在直线为x轴,y轴,z轴,建立空间直角坐标系(如图所示). 设AB1,则A(0,0,0),B(0,1,0),C(1,1,0),D,S(0,0,1),(0,0,1),(1,1,1)显然是底面的法向量,它与已知向量的夹角90,故有sin cos ,0,90,cos .例2解方法一如图,以A为原点,分别以AC,AB,AP所在直线为x轴,y轴,z轴建立空间直角坐标系设PAABa,ACb,连接BD与AC交于点O,取AD中点F,连接EF,EO,FO,则C(b,0,0),B(0,a,0),D(b,a,0),P(0,0,a),E,O,(b,0,0)0,0.EOF等于平面EAC与平面ABCD的夹角(或补角)cos,.平面EAC与平面ABCD的夹角为45.方法二建系如方法一,PA平面ABCD,(0,0,a)为平面ABCD的法向量,(b,0,0)设平面AEC的法向量为m(x,y,z)由得x0,yz.取m(0,1,1),cosm,.平面EAC与平面ABCD的夹角为45.跟踪训练2解如图所示建立空间直角坐标系,则A(0,0,0),B(,1,0),C(0,1,0),P(0,0,1),故(0,0,1),(,1,0),(,0,0),(0,1,1),设平面PAB的法向量为m(x,y,z),则令x1,则y,故m(1,0)设平面PBC的法向量为n(x,y,z),则令y1,则z1,故n(0,1,1),cosm,n.锐二面角APBC的余弦值为.当堂训练1D2.45或1353.4.

    注意事项

    本文(2018版高中数学人教B版选修2-1学案:3.2.3 直线与平面的夹角--3.2.4 二面角及其度量 .docx)为本站会员(荣***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开