2018年高考数学(人教理科)总复习(福建专用)配套训练:课时规范练13 .docx
课时规范练13函数模型及其应用一、基础巩固组1.某产品的总成本y(单位:万元)与产量x(单位:台)之间的函数关系是y=3 000+20x-0.1x2(0<x<240,xN*),若每台产品的售价为25万元,则生产者不亏本时(销售收入不小于总成本)的最低产量是()A.100台B.120台C.150台D.180台2.某房地产公司计划出租70套相同的公寓房.当每套房月租金定为3 000元时,这70套公寓能全租出去;当月租金每增加50元时(设月租金均为50元的整数倍),就会多一套房子租不出去.设租出的每套房子每月需要公司花费100元的日常维修等费用(设租不出去的房子不需要花这些费用).要使公司获得最大利润,每套公寓月租金应定为()A.3 000元B.3 300元C.3 500元D.4 000元3.一个人以6米/秒的速度去追赶停在交通灯前的汽车,当他离汽车25米时交通灯由红变绿,汽车开始变速直线行驶(汽车与人前进方向相同),汽车在时间t内的路程为s=12t2米,那么,此人()A.可在7秒内追上汽车B.可在9秒内追上汽车C.不能追上汽车,但期间最近距离为14米D.不能追上汽车,但期间最近距离为7米4.某企业生产A,B两种产品,根据市场调查与预测,A产品的利润与投资成正比,其关系如图;B产品的利润与投资的算术平方根成正比,其关系如图(注:利润和投资单位:万元).图图(1)分别将A,B两种产品的利润表示为投资的函数关系式;(2)已知该企业已筹集到18万元资金,并将全部资金投入到A,B两种产品的生产中.若平均投入生产两种产品,可获得多少利润?如果你是厂长,怎样分配这18万元投资,才能使该企业获得最大利润?其最大利润为多少万元?5.某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y(单位:g)与时间t(单位:h)之间的关系近似满足如图所示的曲线.(1)写出第一次服药后y与t之间的函数解析式y=f(t);(2)据进一步测定:当每毫升血液中含药量不少于0.25 g时,治疗有效.求服药一次后治疗有效的时间.6.A,B两城相距100 km,在两城之间距A城x km处建一核电站给A,B两城供电,为保证城市安全,核电站与城市距离不得小于10 km.已知供电费用等于供电距离(单位:km)的平方与供电量(单位:亿千瓦时)之积的0.25倍,若A城供电量为每月20亿千瓦时,B城供电量为每月10亿千瓦时.(1)求x的取值范围;(2)把月供电总费用y表示成x的函数;(3)核电站建在距A城多远,才能使供电总费用y最少?导学号21500519二、综合提升组7.某市明年计划投入600万元加强民族文化基础设施改造.据调查,改造后预计该市在一个月内(以30天计),民族文化旅游人数f(x)(单位:万人)与时间x(单位:天)的函数关系近似满足f(x)=41+1x,人均消费g(x)(单位:元)与时间x(单位:天)的函数关系近似满足g(x)=104-|x-23|.(1)求该市旅游日收益p(x)(单位:万元)与时间x(1x30,xN*)的函数关系式;(2)若以最低日收益的15%为纯收入,该市对纯收入按1.5%的税率来收回投资,按此预计两年内能否收回全部投资.8.(2017江苏无锡模拟)某沿海地区养殖的一种特色海鲜上市时间仅能持续5个月,预测上市初期和后期会因供应不足使价格呈持续上涨态势,而中期又将出现供大于求使价格连续下跌.现有三种价格模拟函数:f(x)=pqx;f(x)=px2+qx+1;f(x)=x(x-q)2+p(以上三式中p,q均为常数,且q>1).(1)为准确研究其价格走势,应选哪种价格模拟函数(不必说明理由)?(2)若f(0)=4,f(2)=6,求出所选函数f(x)的解析式(注:函数定义域是0,5,其中x=0表示8月1日,x=1表示9月1日,以此类推);(3)在(2)的条件下研究下面课题:为保证养殖户的经济效益,当地政府计划在价格下跌期间积极拓宽外销,请你预测该海鲜将在哪几个月内价格下跌.导学号215005209.现需要设计一个仓库,它由上下两部分组成,上部的形状是底面为正方形的四棱锥P-A1B1C1D1,下部的形状是正四棱柱(底面为正方形的直棱柱)ABCD-A1B1C1D1(如图所示),并要求正四棱柱的高O1O是四棱锥的高PO1的4倍,O1,O分别为底面中心.(1)若AB=6 m,PO1=2 m,则仓库的容积是多少?(2)若四棱锥的侧棱长为6 m,则当PO1为多少时,仓库的容积最大?三、创新应用组10.(2017江苏南京、盐城二模)在一张足够大的纸板上截取一个面积为3 600平方厘米的矩形纸板ABCD,然后在矩形纸板的四个角上切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸盒(如图).设小正方形的边长为x厘米,矩形纸板的两边AB,BC的长分别为a厘米和b厘米,其中ab.(1)当a=90时,求纸盒侧面积的最大值;(2)试确定a,b,x的值,使得纸盒的体积最大,并求出最大值.导学号21500521课时规范练13函数模型及其应用1.C设利润为f(x)万元,则f(x)=25x-(3 000+20x-0.1x2)=0.1x2+5x-3 000(0<x<240,xN*).令f(x)0,得x150,生产者不亏本时的最低产量是150台.2.B由题意,设利润为y元,租金定为(3 000+50x)元(0x70,xN),则y=(3 000+50x)(70-x)-100(70-x)=(2 900+50x)(70-x)=50(58+x)(70-x)5058+x+70-x22=204 800,当且仅当58+x=70-x,即x=6时,等号成立,故每月租金定为3 000+300=3 300(元)时,公司获得最大利润,故选B.3.D已知s=12t2,车与人的间距d=(s+25)-6t=12t2-6t+25=12(t-6)2+7.当t=6时,d取得最小值7.4.解 (1)设A,B两种产品都投资x万元(x0),所获利润分别为f(x)万元、g(x)万元,由题意可设f(x)=k1x,g(x)=k2x,根据题图可得f(x)=0.25x(x0),g(x)=2x(x0).(2)由(1)得f(9)=2.25,g(9)=29=6,故总利润y=8.25(万元).设B产品投入x万元,A产品投入(18-x)万元,该企业可获总利润为y万元,则y=14(18-x)+2x,0x18.令x=t,t0,32 ,则y=14(-t2+8t+18)=-14(t-4)2+172.故当t=4时,ymax=172=8.5,此时x=16,18-x=2.所以当A,B两种产品分别投入2万元、16万元时,可使该企业获得最大利润8.5万元.5.解 (1)根据所给的曲线,可设y=kt,0t1,12t-a,t>1.当t=1时,由y=4,得k=4,由121-a=4,得a=3.则y=4t,0t1,12t-3,t>1.(2)由y0.25,得0t1,4t0.25或t>1,12t-30.25,解得116t5.因此服药一次后治疗有效的时间为5-116=7916(h).6.解 (1)由题意可知x的取值范围为10x90.(2)y=5x2+52(100-x)2(10x90).(3)因为y=5x2+52(100-x)2=152x2-500x+25 000=152x-10032+50 0003,所以当x=1003时,ymin=50 0003.故核电站建在距A城1003 km处,才能使供电总费用y最少.7.解 (1)由题意知p(x)=f(x)g(x)=41+1x(104-|x-23|)(1x30,xN*).(2)由p(x)=41+1x(81+x)(1x23,xN*),41+1x(127-x)(23<x30,xN*).当1x23时,p(x)=41+1x(81+x)=482+x+81x482+2x81x=400,当且仅当x=81x,即x=9时,p(x)取得最小值400.当23<x30时,p(x)=41+1x(127-x)=4126+127x-x.设h(x)=127x-x,则有h(x)=-127x2-1<0,故h(x)在(23,30上为减函数,则p(x)在(23,30上也是减函数,所以当x=30时,p(x)min=4126+12730-30=400730>400.所以当x=9时,p(x)取得最小值400万元.因为两年内的税收为40015%301221.5%=648>600,所以600万元的投资可以在两年内收回.8.解 (1)因为上市初期和后期价格呈持续上涨态势,而中期又将出现价格连续下跌,所以在给出的函数中应选模拟函数f(x)=x(x-q)2+p.(2)对于f(x)=x(x-q)2+p,由f(0)=4,f(2)=6,可得p=4,(2-q)2=1,又q>1,所以q=3,所以f(x)=x3-6x2+9x+4(0x5).(3)因为f(x)=x3-6x2+9x+4(0x5),所以f(x)=3x2-12x+9,令f(x)<0,得1<x<3.所以函数f(x)在(1,3)内单调递减,所以可以预测这种海鲜将在9月、10月两个月内价格下跌.9.解 (1)由PO1=2 m知O1O=4PO1=8 m.因为A1B1=AB=6 m,所以四棱锥P-A1B1C1D1的体积V锥=13A1B12PO1=13622=24(m3);正四棱柱ABCD-A1B1C1D1的体积V柱=AB2O1O=628=288(m3).所以仓库的容积V=V锥+V柱=24+288=312(m3).(2)设A1B1=a m,PO1=h m,则0<h<6,O1O=4h.连接O1B1.因为在RtPO1B1中,O1B12+PO12=PB12,所以2a22+h2=36,即a2=2(36-h2).于是仓库的容积V=V柱+V锥=a24h+13a2h=133a2h=263(36h-h3),0<h<6,从而V=263(36-3h2)=26(12-h2).令V=0,得h=23或h=-23(舍).当0<h<23时,V>0,V是单调增函数;当23<h<6时,V<0,V是单调减函数.故h=23时,V取得极大值,也是最大值.因此,当PO1=23 m时,仓库的容积最大.10.解 (1)因为矩形纸板ABCD的面积为3 600平方厘米,故当a=90时,b=40,所以纸盒的侧面积S=2x(90-2x)+2x(40-2x)=-8x2+260x,x(0,20).因为S=-8x2+260x=-8x-6542+4 2252,故当x=654时,侧面积最大,最大值为4 2252平方厘米.(2)纸盒的体积V=(a-2x)(b-2x)x=xab-2(a+b)x+4x2,x0,b2,b60.V=xab-2(a+b)x+4x2x(ab-4abx+4x2)=x(3 600-240x+4x2)=4x3-240x2+3 600x.当且仅当a=b=60时等号成立.设f(x)=4x3-240x2+3 600x,x(0,30).则f(x)=12(x-10)(x-30).于是当0<x<10时,f(x)>0,所以f(x)在(0,10)内单调递增;当10<x<30时,f(x)<0,所以f(x)在(10,30)内单调递减.因此当x=10时,f(x)有最大值f(10)=16 000,此时a=b=60,x=10.故当a=b=60,x=10时纸盒的体积最大,最大值为16 000立方厘米.