欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2018版高中数学人教B版必修二学案:第一单元 1.1.6 棱柱、棱锥、棱台和球的表面积 .docx

    • 资源ID:2622162       资源大小:415.27KB        全文页数:10页
    • 资源格式: DOCX        下载积分:5金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2018版高中数学人教B版必修二学案:第一单元 1.1.6 棱柱、棱锥、棱台和球的表面积 .docx

    www.ks5u.com11.6棱柱、棱锥、棱台和球的表面积学习目标1.理解棱柱、棱锥、棱台和球的表面积的概念,了解它们的侧面展开图.2.掌握直棱柱、正棱锥、正棱台的表面积公式,并会求它们的表面积.3.掌握球的表面积公式并会求球的表面积知识点直棱柱、正棱锥、正棱台和旋转体的表面积几何体侧面积公式表面积(全面积)直棱柱S直棱柱侧_棱柱、棱锥、棱台的表面积_正棱锥S正棱锥侧_正棱台S正棱台侧_圆柱S圆柱侧2Rh圆锥S圆锥侧Rl球S球_其中c,c分别表示上、下底面周长,h表示高,h表示斜高,R表示球的半径类型一柱、锥、台的侧(表)面积例1现有一个底面是菱形的直四棱柱,它的体对角线长为9和15,高是5,求该直四棱柱的侧面积反思与感悟多面体表面积的求解方法(1)棱锥、棱台的表面积为其侧面积与底面积之和,底面积根据平面几何知识求解,求侧面积的关键是求斜高和底面周长(2)斜高、侧棱及其在底面的射影与高、底面边长等,往往可以构成直角三角形(或梯形),利用好这些直角三角形(或梯形)是解题的关键跟踪训练1(1)已知正四棱台的上、下底面边长分别为3和6,其侧面积等于两底面面积之和,则该正四棱台的高是()A2 B. C3 D.(2)已知正三棱锥VABC的主视图、俯视图如图所示,其中VA4,AC2,求该三棱锥的表面积例2(1)一个几何体的三视图如图所示,则该几何体的表面积为()A3 B4C24 D34(2)已知圆柱与圆锥的高、底面半径分别相等若圆柱的底面半径为r,圆柱的侧面积为S,则圆锥的侧面积为_反思与感悟由圆柱、圆锥的侧面积公式可知,要求其侧面积,必须已知(或能求出)它的底面圆的半径和它的母线长跟踪训练2(1)一个圆柱的侧面展开图是一个正方形,则这个圆柱的表面积与侧面积的比是()A. B.C. D.(2)轴截面是正三角形的圆锥称作等边圆锥,则等边圆锥的侧面积是底面积的()A4倍 B3倍 C.倍 D2倍类型二简单组合体的表面积例3(1)如图是一建筑物的三视图,现需将其外壁用油漆刷一遍,已知每平方米用漆0.2 千克,问需要油漆多少千克?(尺寸如图,单位:米,取3.14,结果精确到0.01 千克)(2)已知在梯形ABCD中,ADBC,ABC90,ADa,BC2a,DCB60,在平面ABCD内,过点C作lCB,以l为轴将梯形ABCD旋转一周,求旋转体的表面积反思与感悟求组合体表面积的三个基本步骤(1)要弄清楚它是由哪些基本几何体构成的,组成形式是什么(2)根据组合体的组成形式设计计算思路(3)根据公式计算求值跟踪训练3一个几何体的三视图如图所示,则该几何体的表面积为_类型三球的表面积例4有三个球,第一个球内切于正方体,第二个球与这个正方体各条棱相切,第三个球过这个正方体的各个顶点,求这三个球的表面积之比反思与感悟(1)在处理球和长方体的组合问题时,通常先作出过球心且过长方体对角面的截面图,然后通过已知条件求解(2)球的表面积的考查常以外接球的形式出现,可利用几何体的结构特征构造熟悉的正方体,长方体等,通过彼此关系建立关于球的半径的等式求解跟踪训练4已知H是球O的直径AB上一点,AHHB12,AB平面,H为垂足,截球O所得截面的面积为,则球O的表面积为_1一个几何体的三视图如图所示(单位长度:cm),则此几何体的表面积是()A(8016)cm2 B84 cm2C(9616)cm2 D96 cm22某几何体的三视图如图所示,其中俯视图是个半圆,则该几何体的表面积为()A. BC. D.3一块石材表示的几何体的三视图如图所示将该石材切削、打磨,加工成球,则能得到的最大球的半径等于()A1 B2C3 D44一个高为2的圆柱,底面周长为2,则该圆柱的表面积为_5表面积为3的圆锥,它的侧面展开图是一个半圆,则该圆锥的底面直径为_1多面体的表面积为围成多面体的各个面的面积之和棱柱的表面积等于它的侧面积加两个底面积;棱锥的表面积等于它的侧面积加底面积;棱台的表面积等于它的侧面积加两个底的面积2有关旋转体的表面积的计算要充分利用其轴截面,就是说将已知条件尽量归结到轴截面中求解而对于圆台有时需要将它还原成圆锥,再借助相似的相关知识求解答案精析知识梳理知识点chch(cc)h侧面积底面积4R2题型探究例1解如图,设底面对角线ACa,BDb,交点为O,对角线A1C15,B1D9,a252152,b25292,a2200,b256.该直四棱柱的底面是菱形,AB2()2()264,AB8.直四棱柱的侧面积为485160.跟踪训练1(1)A如图,E、E1分别是BC、B1C1的中点,O、O1分别是下、上底面正方形的中心,则O1O为正四棱台的高,连接OE、O1E1,作E1HO1O,由题意,得4936,EE1,在RtEHE1中,E1H2EEEH24,E1H2,O1O2,故选A.(2)解由主视图与俯视图可得正三棱锥的直观图,如图所示,且VAVBVC4,ABBCAC2.取BC的中点D,连接VD,则VDBC,所以VD,则SVBCVDBC2,SABC(2)23,所以三棱锥VABC的表面积为3SVBCSABC333()例2(1)D由三视图可知,原几何体为半圆柱,底面半径为1,高为2,则表面积为S212212222434.(2)解析设圆柱的高为h,则2rhS,h.设圆锥的母线为l,l .圆锥的侧面积为rlr .跟踪训练2(1)A设圆柱的母线长为l,l2r,r,则圆柱的表面积为2r2l22l2l2,侧面积为l2,圆柱的表面积与侧面积的比是l2l2.故选A.(2)D设圆锥底面半径为r,由题意知母线长l2r,则S侧r2r2r2,2.例3(1)解建筑物为一组合体,上面是底面半径为3米,母线长为5米的圆锥,下面是底面边长为3米,高为4米的正四棱柱圆锥的表面积为r2rl3.14323.143528.2647.175.36(平方米)四棱柱的一个底面积为329(平方米),四棱柱的侧面积为44348(平方米)所以外壁面积S75.36948114.36(平方米)故需油漆114.360.222.87222.88(千克)(2)解由题意,线段AB旋转一周形成圆柱的侧面,线段CB旋转一周形成圆C,线段CD旋转一周形成圆锥的侧面,线段AD旋转一周形成一个圆环,DCB60,圆锥的底面半径为ra,母线l2a,高为a,旋转体的表面积SS圆柱侧S圆CS圆锥侧S圆环22aa(2a)2a2a(2a)2a2(94)a2.跟踪训练338解析如图所示,该几何体是长为4,宽为3,高为1的长方体内部挖去一个底面半径为1,高为1的圆柱后剩下的部分S表(413431)221121238.例4解设正方体的棱长为a.(1)正方体的内切球球心是正方体的中心,切点是六个面正方形的中心,经过四个切点及球心作截面,如图,所以有2r1a,r1,所以S14ra2.(2)球与正方体的各棱的切点在每条棱的中点,过球心作正方体的对角面得截面,如图,2r2a,r2a,所以S24r2a2.(3)正方体的各个顶点在球面上,过球心作正方体的对角面得截面,如图,所以有2r3a,r3a,所以S34r3a2.综上可得S1S2S3123.跟踪训练4解析如图,设球O的半径为R,则由AHHB12,得HA2RR,OH.截面面积为(HM)2,HM1.在RtHMO中,OM2OH2HM2,R2R2HM2R21,R.S球4R242.当堂训练1A2.C3.B46解析设圆柱的底面半径为r,高为h.由2r2得r1,S圆柱表2r22rh246.52解析设圆锥的母线为l,圆锥底面半径为r.则l2r23,l2r,r1,即圆锥的底面直径为2.

    注意事项

    本文(2018版高中数学人教B版必修二学案:第一单元 1.1.6 棱柱、棱锥、棱台和球的表面积 .docx)为本站会员(荣***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开