欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2018大二轮高考总复习文数文档:解答题3 概率与统计 .doc

    • 资源ID:2622613       资源大小:870KB        全文页数:19页
    • 资源格式: DOC        下载积分:5金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2018大二轮高考总复习文数文档:解答题3 概率与统计 .doc

    第一单元高考中档大题突破解答题03:概率与统计年 份卷 别具体考查内容及命题位置命题分析2017卷频率分布直方图、独立性检验等知识的综合应用T191.概率、统计的解答题为必考内容,经常出现在18题或19题位置,难度中等2统计问题多考查用最小二乘法求线性回归方程、样本的相关性检验、用样本估计总体等3概率问题多以交汇性的形式考查,交汇点主要有两种:一是两图(频率分布直方图与茎叶图)择一与频率与概率的关系、数据的数字特征相交汇来考查;二是两图(频率分布直方图与茎叶图)择一与线性回归或独立性检验相交汇来考查.卷相关系数、均值与标准差的应用T19卷古典概型、频数、频率的概念及综合应用T182016甲卷频率估计概率、频率分布表与平均值的应用T18乙卷分段函数与样本估计总体的应用T19丙卷两个变量间的线性相关性、线性回归方程的求解与应用T182015卷散点图、回归方程、函数最值问题T19卷频率分布直方图、数据的平均值和方差、用频率估计概率T182014卷频率分布直方图、用样本的数字特征估计总体的数字特征T18卷茎叶图、用样本的数字特征估计总体的数字特征、用频率估计概率T192013卷茎叶图、平均数的含义T18卷频率分布直方图、分段函数、概率与频率T19基本考点古典概型、互斥与对立事件的概率、统计、统计案例考向01:古典概型、互斥与对立事件的概率1古典概型的概率P(A).2互斥事件的概率加法公式(1)如果事件A与B互斥,那么P(AB)P(A)P(B);(2)一般地,如果事件A1,A2,An彼此互斥,那么P(A1A2An)P(A1)P(A2)P(An)3对立事件及其概率公式若事件B与事件A互为对立事件,则P(A)P(B)1,即P(A)1P(B)提醒(1)两个事件互斥未必对立,但对立一定互斥(2)只有事件A,B互斥时,才有公式P(AB)P(A)P(B),否则公式不成立1有编号为1,2,3的三个白球,编号为4,5,6的三个黑球,这六个球除编号和颜色外完全相同,现从中任意取出两个球(1)求取得的两个球颜色相同的概率;(2)求取得的两个球颜色不相同的概率解:从六个球中取出两个球的基本事件:(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共计15个基本事件(1)记事件A为取出的两个球是白球,则这个事件包含的基本事件的是(1,2),(1,3),(2,3),共计3个基本事件,故P(A).记取出的两个球是黑球为事件B,同理可得P(B).记事件C为取出的两个球的颜色相同,则CAB,且A,B互斥,根据互斥事件的概率加法公式,得P(C)P(AB)P(A)P(B).(2)记事件D为取出的两个球的颜色不相同,则事件C,D是对立事件,根据对立事件概率之间的关系,得P(D)1P(C)1.2(2016山东卷)某儿童乐园在“六一”儿童节推出了一项趣味活动,参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数,设两次记录的数分别为x,y.奖励规则如下:若xy3,则奖励玩具一个;若xy8,则奖励水杯一个;其余情况奖励饮料一瓶假设转盘质地均匀,四个区域分布均匀,小亮准备参加此项活动(1)求小亮获得玩具的概率;(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由解:用数对(x,y)表示儿童参加活动先后记录的数,则基本事件空间与点集S(x,y)|xN,yN,1x4,1y4一一对应因为S中元素的个数是4416,所以基本事件总数n16.(1)记“xy3”为事情A,则事件A包含的基本事件数共5个,即(1,1),(1,2),(1,3),(2,1),(3,1),所以P(A),即小亮获得玩具的概率为.(2)记“xy8”为事件B,“3<xy<8”为事件C,则事件B包含的基本事件数共6个,即(2,4),(3,3),(3,4),(4,2),(4,3),(4,4),所以P(B).事件C包含的基本事件数共5个,即(1,4),(2,2),(2,3),(3,2),(4,1)所以P(C),因为>,所以小亮获得水杯的概率大于获得饮料的概率考向02:统计1频率分布直方图中横坐标表示组距,纵坐标表示,频率组距.2频率分布直方图中各小长方形的面积之和为1.3利用频率分布直方图求众数、中位数与平均数时,易出错,应注意区分这三者的含义:(1)最高的小长方形底边中点的横坐标即是众数;(2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和1(2016北京卷)某市民用水拟实行阶梯水价,每人月用水量中不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费,从该市随机调查了10 000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:(1)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?(2)假设同组中的每个数据用该组区间的右端点值代替,当w3时,估计该市居民该月的人均水费解:(1)如题图所示,用水量在0.5,3)的频率的和为:(0.20.30.40.50.3)0.50.85.用水量小于等于3立方米的频率为0.85,又w为整数,为使80%以上的居民在该月的用水价格为4元/立方米,w至少定为3.(2)当w3时,该市居民该月的人均水费估计为:(0.110.151.50.220.252.50.153)40.15340.05(3.53)0.05(43)0.05(4.53)107.21.81.510.5(元)即该市居民该月的人均水费估计为10.5元2(2017合肥模拟)为了比较两种治疗失眠症的药(分别称为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h)试验的观测结果如下:服用A药的20位患者日平均增加的睡眠时间:061.22.71.52.81.82.22.33.23.5252.61.22.71.52.93.03.12.32.4服用B药的20位患者日平均增加的睡眠时间:321.71.90.80.92.41.22.61.31.4160.51.80.62.11.12.51.22.70.5(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好?(2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?解:(1)设A药观测数据的平均数为x,B药观测数据的平均数为,由观测结果可得(0.61.21.21.51.51.82.22.32.32.42.52.62.72.72.82.93.03.13.23.5)2.3,(0.50.50.60.80.91.11.21.21.31.41.61.71.81.92.12.42.52.62.73.2)1.6.由以上计算结果可得>,因此可看出A药的疗效更好(2)由观测结果可绘制如下茎叶图:从以上茎叶图可以看出,A药疗效的试验结果有的叶集中在茎2.,3.上,而B药疗效的试验结果有的叶集中在茎0.,1.上,由此可看出A药的疗效更好考向03:统计案例1回归分析方程x称为线性回归方程,其中,;(,)称为样本点的中心2独立性检验K2,若k0>3.841,则有95%的把握认为两个事件有关;若k0>6.635,则有99%的把握认为两个事件有关1某地最近十年粮食需求量逐年上升,下表是部分统计数据:年份20082010201220142016需求量(万吨)236246257276286(1)利用所给数据求年需求量与年份之间的回归直线方程x;(2)利用(1)中所求出的回归直线方程预测该地2018年的粮食需求量解:(1)由所给数据看出,年需求量与年份之间是近似直线上升,下面来配回归直线方程,为此对数据预处理如下:年份2 01242024需求量257211101929对预处理后的数据,容易算得,0,3. 2,6.5,3.2.由上述计算结果知,所求回归直线方程为257(x2 012)6.5(x2 012)3.2,即6.5(x2 012)260.2.(2)利用(1)中所求回归直线方程,可预测2018年的粮食需求量为6.5(2 0182 012)260.26.56260.2299.2(万吨)2(2017九江模拟)某校数学课外兴趣小组为研究数学成绩是否与性别有关,先统计本校高三年级每个学生一学期数学成绩平均分(采用百分制),剔除平均分在40分以下的学生后,共有男生300名,女生200名现采用分层抽样的方法,从中抽取了100名学生,按性别分为两组,并将两组学生的成绩分为6组,得到如下所示的频数分布表.分数段40,50)50,60)60,70)70,80)80,90)90,100男39181569女64510132(1)估计男、女生各自的平均分(同一组数据用该组区间中点值作代表),从计算结果看,数学成绩与性别是否有关;(2)规定80分以上为优分(含80分),请你根据已知条件作出22列联表,并判断是否有90%以上的把握认为“数学成绩与性别有关”.优分非优分总计男生女生总计100附表及公式:P(K2k0)0.1000.0500.0100.001k02.7063.8416.63510.828K2.解:(1)男450.05550.15650.3750.25850.1950.1571.5,女450.15550.1650.125750.25850.325950.0571.5,从男、女生各自的平均分来看,并不能判断数学成绩与性别有关(2)由频数分布表可知,在抽取的100名学生中,“男生组”中的优分有15人,“女生组”中的优分有15人,据此可得22列联表如下:优分非优分总计男生154560女生152540总计3070100可得K21.79,因为1.79<2.706,所以没有90%以上的把握认为“数学成绩与性别有关”常考热点统计与概率的交汇问题概率与统计题已经发展成为高考解答题的“盘中菜”,难度一般为中档. 概率与统计的交汇题常以生活中的问题为背景,命题重点有以下两种类型:一是“双图(频率分布直方图、茎叶图)”与古典概型的相交汇;二是统计与独立性检验的交汇问题(2017晋城一模)某校从参加高一年级期中考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段40,50),50,60),90,100后得到如下部分频率分布直方图观察图形的信息,回答下列问题:(1)求分数在70,80)内的频率,并补全这个频率分布直方图;(2)用分层抽样的方法在分数段为60,80)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有1人在分数段70,80)的概率【解】(1)分数在70,80)内的频率为1(0.010.0150.0150.0250.005)100.3,故分数在70,80)上的频率是0.3,频率分布直方图如图(2)由题意,60,70)分数段的人数为0.15609,70,80)分数段的人数为0.36018.分层抽样在分数段为60,80)的学生中抽取一个容量为6的样本,60,70)分数段抽取2人,分别记为m,n;70,80)分数段抽取4人,分别记为a,b,c,d.设从中任取2人,至多有1人在分数段70,80)为事件A,则基本事件空间包含的基本事件有(m,n),(m,a),(m,b),(m,c),(m,d),(c,d),共15种,则基本事件A包含的基本事件有(m,n),(m,a),(m,b),(m,c),(m,d),(n,a),(n,b),(n,c),(n,d),共9种,P(A).破解频率分布直方图与古典概型相交汇问题的关键:一是观图得数据,会利用频率分布直方图,求出相应区间的频率与频数;二是会用公式,即会利用古典概型的概率计算公式,要特别注意利用列表法、画图法、列举法、列式计算等方法求基本事件的个数(2017全国卷)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记A表示事件“旧养殖法的箱产量低于50 kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关;箱产量50 kg箱产量50 kg旧养殖法新养殖法(3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比较附:P(K2k)0.0500.0100.001k3.8416.63510.828,K2.【解】(1)旧养殖法的箱产量低于50 kg的频率为(0.0120.0140.0240.0340.040)50.62.因此,事件A的概率估计值为0.62.(2)根据箱产量的频率分布直方图得列联表箱产量50 kg箱产量50 kg旧养殖法6238新养殖法3466K2的观测值15.705.由于15.7056.635,故有99%的把握认为箱产量与养殖方法有关(3)箱产量的频率分布直方图表明:新养殖法的箱产量平均值(或中位数)在50 kg到55 kg之间,旧养殖法的箱产量平均值(或中位数)在45 kg到50 kg之间,且新养殖法的箱产量分布集中程度较旧养殖法的箱产量分布集中程度高,因此,可以认为新养殖法的箱产量较高且稳定,从而新养殖法优于旧养殖法破解此类问题的关键:一是会应用公式作出统计推断,把所给数据代入独立性检验公式求出K2的观测值K,并与临界值进行对比,进而作出统计推断;二是利用古典概型的概率公式求概率1(2017济宁二模)某地政府拟在该地一水库上建造一座水电站,用泄流水量发电图是根据该水库历年的日泄流量的水文资料画成的日泄流量X(单位:万立方米)的频率分布直方图(不完整),已知X0,120,历年中日泄流量在区间30,60)的年平均天数为156,一年按364天计(1)请把频率分布直方图补充完整;(2)已知一台小型发电机,需30万立方米以上的日泄流量才能运行,运行一天可获利润为4000元,若不运行,则每天亏损500元;一台中型发电机,需60万立方米以上的日泄流量才能运行,运行一天可获利10000元,若不运行,则每天亏损800元;根据历年日泄流量的水文资料,水电站决定安装一台发电机,为使一年的日均利润值最大,应安装哪种发电机?解:(1)在区间30,60)的频率为,设在区间0,30)上,a,则301,解得a,补充频率分布直方图如下图:(2)当日泄流量X30(万立方米)时,小型发电机可以运行,则一年中一台小型发电机可运行的天数为:36430364312(天);当日泄流量X60(万立方米)时,中型发电机可以运行,则一年中一台中型发电机可运行的天数为:30364156(天);若运行一台小型发电机,则一年的日均利润值为:(312400052500)3357(或)(元)若运行一台中型发电机,则一年的日均利润值为:(15610000208800)3828(或)(元)因为38283357,故为使水电站一年的日均利润值最大,应安装中型发电机2(2017上饶二模)据统计,2015年“双11”天猫总成交金额突破912亿元某购物网站为优化营销策略,对11月11日当天在该网站进行网购消费且消费金额不超过1000元的1000名网购者(其中有女性800名,男性200名)进行抽样分析采用根据性别分层抽样的方法从这1000名网购者中抽取100名进行分析,得到下表:(消费金额单位:元)女性消费情况:消费金额(0,200)200,400)400,600)600,800)800,1000)人数5101547x男性消费情况:消费金额(0,200)200,400)400,600)600,800)800,1000)人数2310y2(1)计算x,y的值;在抽出的100名且消费金额在800,1000)(单位:元)的网购者中随机选出两名发放网购红包,求选出的两名网购者恰好是一男一女的概率;(2)若消费金额不低于600元的网购者为“网购达人”,低于600元的网购者为“非网购达人”,根据以上统计数据填写22列联表,并回答能否在犯错误的概率不超过0.010的前提下认为“是否为网购达人与性别有关?”女性男性总计网购达人非网购达人总计附:P(K2k0)0.100.050.0250.0100.005k02.7063.8415.0246.6357.879(K2,其中nabcd)解:(1)依题意,女性应抽取80名,男性应抽取20名,x80(5101547)3,y20(23102)3.设抽出的100名且消费金额在800,1000)(单位:元)的网购者中有三位女性记为A、B、C;两位男性记为a、b,从5人中任选2人的基本事件有:(A,B),(A,C),(A,a),(A,b),(B,C),(B,a),(B,b),(C,a),(C,b),(a,b)共10个;设“选出的两名网购者恰好是一男一女”为事件M,事件M包含的基本事件有:(A,a),(A,b),(B,a),(B,b),(C,a),(C,b)共6件,P(M);(2)根据题意,填写22列联表如下表所示:女性男性总计网购达人50555非网购达人301545总计8020100则K29.091,因为9.0916.635,所以能在犯错误的概率不超过0.010的前提下认为“是否为网购达人与性别有关”1(2016全国甲卷)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数012345保费0.85aa1.25a1.5a1.75a2a随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:出险次数012345频数605030302010(1)记A为事件:“一续保人本年度的保费不高于基本保费”,求P(A)的估计值;(2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P(B)的估计值;(3)求续保人本年度的平均保费的估计值解:(1)事件A发生当且仅当一年内出险次数小于2.由所给数据知,一年内出险次数小于2的频率为0.55.故P(A)的估计值为0.55.(2)事件B发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小于4的频率为0.3.故P(B)的估计值为0.3.(3)由所给数据得保费0.85aa1.25a1.5a1.75a2a频率0.300.250.150.150.100.05调查的200名续保人的平均保费为085a0. 30a0.251.25a0.151.5a0.151.75a0.102a0.051.192 5a.因此,续保人本年度平均保费的估计值为1.192 5a.2(2017山西四校联考)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:A配方的频数分布表指标值分组90,94)94,98)98,102)102,106)106,110频数82042228B配方的频数分布表指标值分组90,94)94,98)98,102)102,106)106,110频数412423210(1)分别估计用A配方,B配方生产的产品的优质品率;(2)已知用B配方生产的一件产品的利润y(单位:元)与其质量指标值t的关系式为y估计用B配方生产的一件产品的利润大于0的概率,并求用B配方生产的上述100件产品平均一件的利润解:(1)由试验结果知,用A配方生产的新产品中优质品的频率为0.3,所以用A配方生产的产品的优质品率的估计值为0.3.由试验结果知,用B配方生产的产品中优质品的频率为0.42,所以用B配方生产的产品的优质品率的估计值为0.42.(2)由条件知,用B配方生产的一件产品的利润大于0当且仅当其质量指标值t94,由试验结果知,质量指标值t94的频率为0.96,所以用B配方生产的一件产品的利润大于0的概率估计值为0.96.用B配方生产的产品平均一件的利润为4(2)5424242.68(元)3(2017玉林、贵港联考)某市地铁即将于2018年8月开始运营,为此召开了一个价格听证会,拟定价格后又进行了一次调查,随机抽查了50人,他们的收入与态度如下:月收入(单位:百元)15,25)25,35)35,45)45,55)55,65)65,75赞成定价者人数123534认为价格偏高者人数4812521(1)若以区间的中点值为该区间内的人均月收入,求参与调查的人员中“赞成定价者”与“认为价格偏高者”的月平均收入的差距是多少(结果保留2位小数);(2)由以上统计数据填写下面的22列联表分析是否有99%的把握认为“月收入以55百元为分界点对地铁定价的态度有差异”月收入低于55百元的人数月收入不低于55百元的人数总计认为价格偏高者赞成定价者总计附:K2.P(K2k0)0.050.01k03.8416.635解:(1)“赞成定价者”的月平均收入为150.56.“认为价格偏高者”的月平均收入为238.75,“赞成定价者”与“认为价格偏高者”的月平均收入的差距是1250.5638.7511.81(百元)(2)根据条件可得22列联表如下:月收入低于55百元的人数月收入不低于55百元的人数总计认为价格偏高者29332赞成定价者11718总计401050K26.27<6.635,没有99%的把握认为“月收入以55百元为分界点对地铁定价的态度有差异”4(2017开封模拟)甲、乙两人参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,画出茎叶图如图所示,乙的成绩中有一个数的个位数字模糊,在茎叶图中用c表示(1)假设c5,现要从甲、乙两人中选派一人参加数学竞赛,从统计学的角度,你认为派哪位学生参加比较合适?(2)假设数字c的取值是随机的,求乙的平均分高于甲的平均分的概率(把频率当作概率)解:(1)若c5,则派甲参加比较合适,理由如下:甲(70280490298842153)85,乙(70180490353525)85,s(7885)2(7985)2(8185)2(8285)2(8485)2(8885)2(9385)2(9585)235.5,s(7585)2(8085)2(8085)2(8385)2(8585)2(9085)2(9285)2(9585)241.甲乙,s<s,两人的平均成绩相等,但甲的成绩比较稳定,派甲参加比较合适(2)由(1)知若乙>甲,则c>5,c6,7,8,9,又c的所有可能取值为0,1,2,3,4,5,6,7,8,9,乙的平均分高于甲的平均分的概率为.5.(2017唐山模拟)某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组:50,60),60,70),70,80),80,90),90,100分别加以统计,得到如图所示的频率分布直方图(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率;(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成22列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?P(K2k0)0.1000.0500.0100.001k02.7063.8416.63510.828附:K2.解:(1)由已知得,样本中有25周岁以上组工人60名,25周岁以下组工人40名所以,样本中日平均生产件数不足60件的工人中,25周岁以上组工人有600.053(人),记为A1,A2,A3;25周岁以下组工人有400.052(人),记为B1,B2.从中随机抽取2名工人,所有的可能结果共有10种,它们是(A1,A2),(A1,A3),(A2,A3),(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2)其中,至少有1名“25周岁以下组”工人的可能结果共有7种,它们是(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2)故所求的概率P.(2)由频率分布直方图可知,在抽取的100名工人中,“25周岁以上组”中的生产能手有600.2515(人),“25周岁以下组”中的生产能手有400.37515(人),据此可得22列联表如下:生产能手非生产能手总计25周岁以上组15456025周岁以下组152540总计3070100所以K21.79.因为1.79<2.706,所以没有90%的把握认为“生产能手与工人所在的年龄组有关”6(2017全国卷)为了监控某种零件的一条生产线的生产过程,检验员每隔30 min从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm)下面是检验员在一天内依次抽取的16个零件的尺寸:抽取次序12345678零件尺寸9.9510.129.969.9610.019.929.9810.04抽取次序910111213141516零件尺寸10.269.9110.1310.029.2210.0410.059.95经计算得i9.97,s0.212, 18.439,(xi)(i8.5)2.78,其中xi为抽取的第i个零件的尺寸,i1,2,16.(1)求(xi,i)(i1,2,16)的相关系数r,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若|r|<0.25,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小)(2)一天内抽检零件中,如果出现了尺寸在(3s,3s)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查()从这一天抽检的结果看,是否需对当天的生产过程进行检查?()在(3s,3s)之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差(精确到0.01)附:样本(xi,yi)(i1,2,n)的相关系数r,0.09.解:(1)由样本数据得(xi,i)(i1,2,16)的相关系数r0.18.由于|r|<0.25,因此可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(2)()由于9.97,s0.212,因此由样本数据可以看出抽取的第13个零件的尺寸在(3s,3s)以外,因此需对当天的生产过程进行检查()剔除离群值,即第13个数据,剩下数据的平均数为(169.979.22)10.02,这条生产线当天生产的零件尺寸的均值的估计值为10.02.160.2122169.9721 591.134,剔除第13个数据,剩下数据的样本方差为(1 591.1349.2221510.022)0.008,这条生产线当天生产的零件尺寸的标准差的估计值为0.09.

    注意事项

    本文(2018大二轮高考总复习文数文档:解答题3 概率与统计 .doc)为本站会员(荣***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开