2017-2018学年高中数学苏教版选修2-3:课时跟踪训练(一) 分类计数原理与分步计数原理 .doc
课时跟踪训练(一)分类计数原理与分步计数原理一、填空题1一项工作可以用2种方法完成,有3人会用第1种方法完成,另外5人会用第2种方法完成,从中选出1人来完成这项工作,不同选法有_2有4位教师在同一年级的4个班中各教一个班的数学,在数学检测时要求每位教师不能在本班监考,则监考的方法有_种33名学生报名参加艺术体操、美术、计算机、游泳课外兴趣小组,每人选报一种,则不同的报名种数有_种4某地奥运火炬接力传递路线共分6段,传递活动分别由6名火炬手完成如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方案共有_种(用数字作答)5从集合A1,2,3,4中任取2个数作为二次函数yx2bxc的系数b,c,且bc,则可构成_个不同的二次函数二、解答题6从集合1,2,3,10中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列有多少个?7已知a3,4,6,b1,2,7,8,r8,9,则方程(xa)2(yb)2r2可表示多少个不同的圆?8书架上层放有6本不同的数学书,下层放有5本不同的语文书(1)从中任取一本,有多少种不同的取法?(2)从中任取数学书与语文书各一本,有多少种不同的取法?答 案1解析:由分类计数原理知,有358种不同的选法答案:82解析:分四步完成:第一步:第1位教师有3种选法;第二步:由第一步教师监考班的数学老师选有3种选法;第三步:第3位教师有1种选法;第四步:第4位教师有1种选法共有33119种监考的方法答案:93解析:第1名学生有4种选报方法;第2、3名学生也各有4种选报方法,因此,根据分步计数原理,不同的报名种数有44464.答案:644解析:分两类,第一棒是丙有12432148(种);第一棒是甲、乙中一人有21432148(种),根据分类计数原理得:共有方案484896(种)答案:965解析:分成两个步骤完成:第一步选出b,有4种方法;第二步选出c,由于bc,则有3种方法根据分步计数原理得:共有4312个不同的二次函数答案:126解:当公比为2时,等比数列可为1,2,4;2,4,8;当公比为3时,等比数列可为1,3,9;当公比为时,等比数列可为4,6,9.同时,4,2,1;8,4,2;9,3,1和9,6,4也是等比数列,共8个7解:按a,b,r取值顺序分步考虑:第一步:a从3,4,6中任取一个数,有3种取法;第二步:b从1,2,7,8中任取一个数,有4种取法;第三步:r从8、9中任取一个数,有2种取法;由分步计数原理知,表示的不同圆有N34224(个)8解:(1)从书架上任取一本书,有两类方法:第一类方法是从上层取一本数学书,有6种方法;第二类方法是从下层取一本语文书,有5种方法根据分类计数原理,得到不同的取法的种数是6511.答:从书架上任取一本书,有11种不同的取法(2)从书架上任取数学书与语文书各一本,可以分成两个步骤完成:第一步取一本数学书,有6种取法;第二步取一本语文书,有5种取法根据分步计数原理,得到不同的取法的种数是6530.答:从书架上取数学书与语文书各一本,有30种不同的取法