2018版高中数学人教B版选修2-2学案:2习题课 综合法和分析法 .docx
-
资源ID:2623897
资源大小:166.65KB
全文页数:5页
- 资源格式: DOCX
下载积分:5金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2018版高中数学人教B版选修2-2学案:2习题课 综合法和分析法 .docx
习题课 综合法和分析法明目标、知重点加深对综合法、分析法的理解,应用两种方法证明数学问题1综合法综合法是中学数学证明中最常用的方法,它是从已知到未知,从题设到结论的逻辑推理方法,即从题设中的已知条件或已证的真实判断出发,经过一系列的中间推理,最后导出所要求证的命题综合法是一种由因导果的证明方法综合法的证明步骤用符号表示是:P0(已知)P1P2Pn(结论)2分析法分析法是指从需证的问题出发,分析出使这个问题成立的充分条件,使问题转化为判定那些条件是否具备,其特点可以描述为“执果索因”,即从未知看需知,逐步靠拢已知分析法的书写形式一般为“因为,为了证明,只需证明,即,因此,只需证明,因为成立,所以,结论成立”分析法的证明步骤用符号表示是:P0(已知)Pn2Pn1Pn(结论)分析法属逻辑方法范畴,它的严谨体现在分析过程步步可逆题型一选择恰当的方法证明不等式例1设a,b,c为任意三角形三边长,Iabc,Sabbcca,试证:3SI2<4S.证明I2(abc)2a2b2c22ab2bc2caa2b2c22S.欲证3SI2<4S,即证abbccaa2b2c2<2ab2bc2ca.先证明abbccaa2b2c2,只需证2a22b22c22ab2bc2ca,即(ab)2(ac)2(bc)20,显然成立;再证明a2b2c2<2ab2bc2ca,只需证a2abacb2abbcc2bcca<0,即a(abc)b(bac)c(cba)<0,只需证a<bc,且b<ca,且c<ba,由于a、b、c为三角形的三边长,上述三式显然成立,故有3SI2<4S.反思与感悟本题要证明的结论要先进行转化,可以使用分析法对于连续不等式的证明,可以分段来证,使证明过程层次清晰证明不等式所依赖的主要是不等式的基本性质和已知的重要不等式,其中常用的有如下几个:(1)a20(aR)(2)(ab)20(a、bR),其变形有a2b22ab,()2ab,a2b2.(3)若a,b(0,),则,特别地2.(4)a2b2c2abbcca(a,b,cR)跟踪训练1已知a,b是正数,且ab1,求证:4.证明方法一a,b是正数且ab1,ab2,4.方法二a,b是正数,ab2>0,2>0,(ab)()4.又ab1,4.方法三1122 4.当且仅当ab时,取“”号题型二选择恰当的方法证明等式例2已知ABC的三个内角A,B,C成等差数列,对应的三边为a,b,c,求证:.证明要证原式,只需证3,即证1,即只需证1,而由题意知AC2B,B,b2a2c2ac,1,原等式成立,即.反思与感悟综合法推理清晰,易于书写,分析法从结论入手易于寻找解题思路在实际证明命题时,常把分析法与综合法结合起来使用,称为分析综合法,其结构特点是:根据条件的结构特点去转化结论,得到中间结论Q;根据结论的结构特点去转化条件,得到中间结论P;若由P可推出Q,即可得证跟踪训练2设实数a,b,c成等比数列,非零实数x,y分别为a与b,b与c的等差中项,试证:2.证明由已知条件得b2ac,2xab,2ybc.要证2,只要证aycx2xy,只要证2ay2cx4xy.由得2ay2cxa(bc)c(ab)ab2acbc,4xy(ab)(bc)abb2acbcab2acbc,所以2ay2cx4xy.命题得证题型三立体几何中位置关系的证明例3如图,在四棱锥PABCD中,PA底面ABCD,ABAD,ACCD,ABC60,PAABBC,E是PC的中点(1)证明:CDAE;(2)证明:PD平面ABE.证明(1)在四棱锥PABCD中,PA底面ABCD,CD底面ABCD,PACD.ACCD,PAACA,CD平面PAC,而AE平面PAC,CDAE.(2)由PAABBC,ABC60,可得ACPA,E是PC的中点,AEPC.由(1)知,AECD,且PCCDC,所以AE平面PCD.而PD平面PCD,AEPD.PA底面ABCD,PAAB,又ABAD,AB平面PAD,ABPD,又ABAEA,综上得PD平面ABE.反思与感悟综合法证明线面之间的垂直关系是高考考查的重点,利用垂直的判定定理和性质定理可以进行线线、线面以及面面之间垂直关系的转化另外,利用一些常见的结论还常常可以将线面间的垂直与平行进行转化比如:两条平行线中一条垂直于平面,则另外一条也垂直于平面;垂直于同一条直线的两个平面相互平行等跟踪训练3如图,正方形ABCD和四边形ACEF所在的平面互相垂直,EFAC,AB,CEEF1. (1)求证:AF平面BDE;(2)求证:CF平面BDE.证明(1)如图,设AC与BD交于点G.因为EFAG,且EF1,AGAC1,所以四边形AGEF为平行四边形所以AFEG.因为EG平面BDE,AF平面BDE,所以AF平面BDE.(2)连接FG.因为EFCG,EFCG1,且CE1,所以四边形CEFG为菱形所以CFEG.因为四边形ABCD为正方形,所以BDAC.又因为平面ACEF平面ABCD,且平面ACEF平面ABCDAC,所以BD平面ACEF.所以CFBD.又BDEGG,所以CF平面BDE.呈重点、现规律1综合法的特点是:从已知看可知,逐步推出未知2分析法的特点是:从未知看需知,逐步靠拢已知3分析法和综合法各有优缺点分析法思考起来比较自然,容易寻找到解题的思路和方法,缺点是思路逆行,叙述较繁;综合法从条件推出结论,较简捷地解决问题,但不便于思考实际证题时常常两法兼用,先用分析法探索证明途径,然后再用综合法叙述出来