欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2018版人教A版高中数学必修二同步学习讲义:第二章 点、直线、平面之间的位置关系2.2.4 .docx

    • 资源ID:2624704       资源大小:706.01KB        全文页数:13页
    • 资源格式: DOCX        下载积分:5金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2018版人教A版高中数学必修二同步学习讲义:第二章 点、直线、平面之间的位置关系2.2.4 .docx

    2.2.4平面与平面平行的性质学习目标1.掌握平面与平面平行的性质,并会应用性质解决问题.2.知道直线与直线、直线与平面、平面与平面之间的平行关系可以相互转化知识点平面与平面平行的性质观察长方体ABCDA1B1C1D1的两个面:平面ABCD及平面A1B1C1D1.思考1平面A1B1C1D1中的所有直线都平行于平面ABCD吗?答案是的思考2若m平面ABCD,n平面A1B1C1D1,则mn吗?答案不一定,也可能异面思考3过BC的平面交面A1B1C1D1于B1C1,B1C1与BC是什么关系?答案平行梳理文字语言如果两个平行平面同时和第三个平面相交,那么它们的交线平行符号语言,a,bab图形语言类型一面面平行的性质定理的应用例1如图,平面,A、C,B、D,直线AB与CD交于S,且AS8,BS9,CD34,求CS的长证明设AB,CD共面,因为AC,BD,且,所以ACBD,所以SACSBD,所以,即,所以SC272.引申探究若将本例改为:点S在平面,之间(如图),其他条件不变,求CS的长解设AB,CD共面,AC,BD.因为,所以AC与BD无公共点,所以ACBD,所以ACSBDS,所以.设CSx,则,所以x16,即CS16.反思与感悟应用平面与平面平行性质定理的基本步骤跟踪训练1如图所示,平面平面,ABC,ABC分别在,内,线段AA,BB,CC共点于O,O在平面和平面之间,若AB2,AC2,BAC60,OAOA32,则ABC的面积为_答案解析AA,BB相交于O,所以AA,BB确定的平面与平面,平面的交线分别为AB,AB,有ABAB,且,同理可得,所以ABC,ABC面积的比为94,又ABC的面积为,所以ABC的面积为.例2如图所示,平面四边形ABCD的四个顶点A,B,C,D均在平行四边形ABCD外,且AA,BB,CC,DD互相平行,求证:四边形ABCD是平行四边形证明四边形ABCD是平行四边形,ADBC.AD平面BBCC,BC平面BBCC,AD平面BBCC.同理AA平面BBCC.AD平面AADD,AA平面AADD,且ADAAA,平面AADD平面BBCC.又AD,BC分别是平面ABCD与平面AADD,平面BBCC的交线,ADBC.同理可证ABCD.四边形ABCD是平行四边形反思与感悟本例充分利用了ABCD的平行关系及AA,BB,CC,DD间的平行关系,先得出线面平行,再得面面平行,最后由面面平行的性质定理得线线平行跟踪训练2如图,已知E,F分别是正方体ABCDA1B1C1D1的棱AA1,CC1的中点,求证:四边形BED1F是平行四边形证明如图,连接AC,BD,交点为O,连接A1C1,B1D1,交点为O1,连接BD1,EF,OO1,设OO1的中点为M,由正方体的性质可得四边形ACC1A1为矩形又因为E,F分别为AA1,CC1的中点,所以EF过OO1的中点M,同理四边形BDD1B1为矩形,BD1过OO1的中点M,所以EF与BD1相交于点M,所以E,B,F,D1四点共面又因为平面ADD1A1平面BCC1B1,平面EBFD1平面ADD1A1ED1,平面EBFD1平面BCC1B1BF,所以ED1BF.同理,EBD1F.所以四边形BED1F是平行四边形类型二平行关系的综合应用例3设AB,CD为夹在两个平行平面,之间的线段,且直线AB,CD为异面直线,M,P分别为AB,CD的中点求证:MP平面.证明如图,过点A作AECD交平面于点E,连接DE,BE.AECD,AE,CD确定一个平面,设为,则AC,DE.又,ACDE(面面平行的性质定理),取AE的中点N,连接NP,MN,M,P分别为AB,CD的中点,NPDE,MNBE.又NP,DE,MN,BE,NP,MN,NPMNN,平面MNP.MP平面MNP,MP,MP.反思与感悟线线平行、线面平行、面面平行是一个有机的整体,平行关系的判定定理、性质定理是转化平行关系的关键,其内在联系如图所示:跟踪训练3如图所示,在正方体ABCDA1B1C1D1中,点N在BD上,点M在B1C上,且CMDN.求证MN平面AA1B1B.证明如图,作MPBB1交BC于点P,连接NP,MPBB1,.BDB1C,DNCM,B1MBN.,NPCDAB.NP平面AA1B1B,AB平面AA1B1B,NP平面AA1B1B.MPBB1,MP平面AA1B1B,BB1平面AA1B1B,MP平面AA1B1B,又MP平面MNP,NP平面MNP,MPNPP,平面MNP平面AA1B1B.MN平面MNP,MN平面AA1B1B.1已知平面与平面平行,a,则下列命题正确的是()Aa与内所有直线平行Ba与内的无数条直线平行Ca与内的任何一条直线都不平行Da与内的一条直线平行答案B解析若,a,则a与内的部分直线平行,所以A、C、D均不正确,B正确2若平面平面,直线a,点M,过点M的所有直线中()A不一定存在与a平行的直线B只有两条与a平行的直线C存在无数条与a平行的直线D有且只有一条与a平行的直线答案D解析由于,a,M,过M有且只有一条直线与平行,故D项正确3平面平面,平面平面,且a,b,c,d,则交线a,b,c,d的位置关系是()A互相平行 B交于一点C相互异面 D不能确定答案A解析由平面与平面平行的性质定理知,ab,ac,bd,cd,所以abcd,故选A.4过正方体ABDCA1B1C1D1的三顶点A1、C1、B的平面与底面ABCD所在平面的交线为l,则l与A1C1的位置关系是_答案平行解析因平面ABCD平面A1B1C1D1,平面ABCD平面A1C1Bl,平面A1B1C1D1平面A1C1BA1C1,所以lA1C1(面面平行的性质定理)5已知AB,CD是夹在两个平行平面,之间的线段,A,B,C,D四点共面,M,N分别为AB,CD的中点,求证:MN平面.证明平面ABDC与,的交线为AC,BD.因为,所以ACBD.又M,N分别为AB,CD的中点,所以MNBD,所以MNAC.又AC平面,所以MN平面.1常用的面面平行的其他几个性质(1)两个平面平行,其中一个平面内的任意一条直线平行于另一个平面(2)夹在两个平行平面之间的平行线段长度相等(3)经过平面外一点有且只有一个平面与已知平面平行(4)两条直线被三个平行平面所截,截得的对应线段成比例(5)如果两个平面分别平行于第三个平面,那么这两个平面互相平行2空间中各种平行关系相互转化关系的示意图课时作业一、选择题1如果平面平行于平面,那么()A平面内任意直线都平行于平面B平面内有两条相交直线平行于平面C平面内任意直线都平行于平面内的任意直线D平面内的直线与平面内的直线不能垂直答案A2已知,a,那么a与的关系是()A平行 B相交 C在面内 D垂直答案A解析平面与平面平行,两个平面没有公共点,所以直线和平面没有公共点,直线与平面平行,故选A.3下列命题:一条直线与两个平行平面中的一个平面相交,必与另外一个平面相交;如果一个平面平行于两个平行平面中的一个平面,必平行于另一个平面;夹在两个平行平面间的平行线段相等其中正确的是命题的个数为()A1 B2 C3 D0答案C解析根据面面平行的性质知正确,故选C.4.如图所示,P是三角形ABC所在平面外一点,平面平面ABC,分别交线段PA、PB、PC于A、B、C,若PAAA23,则SABCSABC等于()A225 B425C25 D45答案B解析平面平面ABC,平面PAB与它们的交线分别为AB,AB,ABAB,同理BCBC,易得ABCABC,SABCSABC()2()2.5,为三个不重合的平面,a,b,c为三条不同的直线,则下列命题中不正确的是()ab; ab; ;a; a.A BC D答案C解析由公理4及平行平面的传递性知正确举反例知不正确中a,b可以相交,还可以异面;中,可以相交;中a可以在内;中a可以在内6下列命题中,错误的是()A平面内一个三角形各边所在的直线都与另一个平面平行,则这两个平面平行B平行于同一个平面的两个平面平行C若两个平面平行,则位于这两个平面内的直线也互相平行D若两个平面平行,则其中一个平面内的直线平行于另一个平面答案C解析由面面平行的判定定理和性质知A、B、D正确对于C,位于两个平行平面内的直线也可能异面7设,A,B,C是AB的中点,当A、B分别在平面、内运动时,得到无数个AB的中点C,那么所有的动点C()A不共面B当且仅当A、B分别在两条直线上移动时才共面C当且仅当A、B分别在两条给定的异面直线上移动时才共面D不论A、B如何移动,都共面答案D解析如图所示,A、B分别是A、B两点在、上运动后的两点,此时AB中点C变成AB的中点C,连接AB,取AB的中点E.连接CE、CE、AA、BB、CC,则CEAA,CE.又CEBB,CE.又,CE.CECEE,平面CCE平面,CC平面.不论A、B如何移动,所有的动点C都在过C点且与、平行的平面上二、填空题8如图所示,平面四边形ABCD所在的平面与平面平行,且四边形ABCD在平面内的平行投影A1B1C1D1是一个平行四边形,则四边形ABCD的形状一定是_答案平行四边形解析由夹在两平行平面间的平行线段相等可得9. 如图,在长方体ABCDA1B1C1D1中,过BB1的中点E作一个与平面ACB1平行的平面交AB与M,交BC与N,则_.答案解析平面MNE平面ACB1,由面面平行的性质定理可得ENB1C,EMB1A,又E为BB1的中点,M,N分别为BA,BC的中点,MNAC.即.10.如图,已知,GH,GD,EH分别交,于A,B,C,D,E,F,且GA9,AB12,BH16,则_.答案解析因为平面GACAC,平面GBDBD,且,所以ACBD,同理可证AEBF.又因为EAC与FBD的两边同向,所以EACFBD.又因为GA9,AB12,ACBD,所以.11已知平面,P且P,过点P的直线m与,分别交于点A,C,过点P的直线n与,分别交于点B,D,且PA6,AC9,PD8,则BD的长为_答案或24解析如图所示,ACBDP,经过直线AC与BD可确定平面PCD.,平面PCDAB,平面PCDCD,ABCD.,即,BD.如图所示,同理可证ABCD,即,BD24.综上所述,BD的长为或24.12已知l,m,n是互不相同的直线,是三个不同的平面,给出下列命题:若l与m为异面直线,l,m,则;若,l,m,则lm;若l,m,n,l,则mn.其中所有真命题的序号为_答案解析中可能与相交;中直线l与m可能异面;中根据线面平行的性质定理可以证明mn.三、解答题13.如图,在三棱柱ABCA1B1C1中,M是A1C1的中点,平面AB1M平面BC1N,AC平面BC1NN.求证:N为AC的中点证明平面AB1M平面BC1N,平面ACC1A1平面AB1MAM,平面BC1N平面ACC1A1C1N,C1NAM,又ACA1C1,四边形ANC1M为平行四边形,ANC1MA1C1AC,N为AC的中点14如图,在长方体ABCDA1B1C1D1中,E是BC上一点,M,N分别是AE,CD1的中点,ADAA1a,AB2a,求证:MN平面ADD1A1.证明如图,取CD的中点K,连接MK,NK.因为M,N,K分别是AE,CD1,CD的中点,所以MKAD,NKDD1.又MK平面ADD1A1,AD平面ADD1A1,所以MK平面ADD1A1.同理NK平面ADD1A1.又MKNKK,所以平面MNK平面ADD1A1,又MN平面MNK,所以MN平面ADD1A1.四、探究与拓展15.如图所示,在三棱柱ABCA1B1C1中,D是棱CC1的中点,问在棱AB上是否存在一点E,使DE平面AB1C1?若存在,请确定点E的位置;若不存在,请说明理由解存在点E,且E为AB的中点时,DE平面AB1C1.证明如下:如图,取BB1的中点F,连接DF,则DFB1C1,因为AB的中点为E,连接EF,则EFAB1,B1C1AB1B1,EFDFF,所以平面DEF平面AB1C1.又DE平面DEF,所以DE平面AB1C1.

    注意事项

    本文(2018版人教A版高中数学必修二同步学习讲义:第二章 点、直线、平面之间的位置关系2.2.4 .docx)为本站会员(荣***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开