2019高三数学(人教B文)一轮考点规范练:第八章 立体几何 39 .docx
考点规范练39直线、平面平行的判定与性质基础巩固1.对于空间的两条直线m,n和一个平面,下列命题中的真命题是()A.若m,n,则mnB.若m,n,则mnC.若m,n,则mnD.若m,n,则mn2.下列四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出AB平面MNP的图形的序号是()A.B.C.D.3.设l表示直线,表示平面.给出四个结论:如果l,则内有无数条直线与l平行;如果l,则内任意的直线与l平行;如果,则内任意的直线与平行;如果,对于内的一条确定的直线a,在内仅有唯一的直线与a平行.以上四个结论中,正确结论的个数为()A.0B.1C.2D.34.平面平面的一个充分条件是()A.存在一条直线a,a,aB.存在一条直线a,a,aC.存在两条平行直线a,b,a,b,a,bD.存在两条异面直线a,b,a,b,a,b5.已知平面和不重合的两条直线m,n,下列选项正确的是()A.如果m,n,m,n是异面直线,那么nB.如果m,n与相交,那么m,n是异面直线C.如果m,n,m,n共面,那么mnD.如果m,nm,那么n6.如图,四边形ABCD是边长为1的正方形,MD平面ABCD,NB平面ABCD,且MD=NB=1,G为MC的中点.则下列结论不正确的是()A.MCANB.GB平面AMNC.平面CMN平面AMND.平面DCM平面ABN7.设l,m,n表示不同的直线,表示不同的平面,给出下列四个命题:若ml,且m,则l;若ml,且m,则l;若=l,=m,=n,则lmn;若=m,=l,=n,且n,则lm.其中正确命题的个数是()A.1B.2C.3D.48.过三棱柱ABC-A1B1C1的任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有条.9.如图,四棱锥P-ABCD的底面是一直角梯形,ABCD,BAAD,CD=2AB,PA底面ABCD,E为PC的中点,则BE与平面PAD的位置关系为.10.在正四棱柱ABCD-A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,则点Q满足条件时,有平面D1BQ平面PAO.11.如图,三棱台DEF-ABC中,AB=2DE,G,H分别为AC,BC的中点.求证:BD平面FGH.12.(2017安徽淮南一模)如图,直三棱柱ABC-A1B1C1中,ACAB,AB=2AA1,M是AB的中点,A1MC1是等腰三角形,D为CC1的中点,E为BC上一点.(1)若BE=3EC,求证:DE平面A1MC1;(2)若AA1=1,求三棱锥A-MA1C1的体积.能力提升13.在空间四边形ABCD中,E,F分别为AB,AD上的点,且AEEB=AFFD=14.又H,G分别为BC,CD的中点,则()A.BD平面EFG,且四边形EFGH是平行四边形B.EF平面BCD,且四边形EFGH是梯形C.HG平面ABD,且四边形EFGH是平行四边形D.EH平面ADC,且四边形EFGH是梯形14.平面过正方体ABCD-A1B1C1D1的顶点A,平面CB1D1,平面ABCD=m,平面ABB1A1=n,则m,n所成角的正弦值为()A.32B.22C.33D.1315.设,为三个不同的平面,m,n是两条不同的直线,在命题“=m,n,且,则mn”中的横线处填入下列三组条件中的一组,使该命题为真命题.,n;m,n;n,m.可以填入的条件有()A.B.C.D.16.在三棱锥S-ABC中,ABC是边长为6的正三角形,SA=SB=SC=15,平面DEFH分别与AB,BC,SC,SA交于D,E,F,H.D,E分别是AB,BC的中点,如果直线SB平面DEFH,那么四边形DEFH的面积为.17.如图,在四棱锥P-ABCD中,PACD,ADBC,ADC=PAB=90,BC=CD=12AD.(1)在平面PAD内找一点M,使得直线CM平面PAB,并说明理由;(2)证明:平面PAB平面PBD.高考预测18.如图,已知正方形ABCD的边长为6,点E,F分别在边AB,AD上,AE=AF=4,现将AEF沿线段EF折起到AEF位置,使得AC=26.(1)求五棱锥A-BCDFE的体积.(2)在线段AC上是否存在一点M,使得BM平面AEF?若存在,求AM;若不存在,请说明理由.参考答案考点规范练39直线、平面平行的判定与性质1.D解析对A,直线m,n可能平行、异面或相交,故A错误;对B,直线m与n可能平行,也可能异面,故B错误;对C,m与n垂直而非平行,故C错误;对D,垂直于同一平面的两直线平行,故D正确.2.C解析对于图形,平面MNP与AB所在的对角面平行,即可得到AB平面MNP;对于图形,ABPN,即可得到AB平面MNP;图形无论用定义还是判定定理都无法证明线面平行.3.C解析中内的直线与l可异面,中可有无数条.4.D解析若=l,al,a,a,则a,a,故排除A.若=l,a,al,则a,故排除B.若=l,a,al,b,bl,则a,b,故排除C.选D.5.C解析如图(1)可知A错;如图(2)可知B错;如图(3),m,n是内的任意直线,都有nm,故D错.n,n与无公共点,m,n与m无公共点,又m,n共面,mn,故选C.6.C解析显然该几何图形为正方体截去两个三棱锥所剩的几何体,把该几何体放置到正方体中(如图),取AN的中点H,连接HB,MH,则MCHB,又HBAN,所以MCAN,所以A正确;由题意易得GBMH,又GB平面AMN,MH平面AMN,所以GB平面AMN,所以B正确;因为ABCD,DMBN,且ABBN=B,CDDM=D,所以平面DCM平面ABN,所以D正确.7.B解析对,两条平行线中有一条与一平面垂直,则另一条也与这个平面垂直,故正确;对,直线l可能在平面内,故错误;对,三条交线除了平行,还可能相交于同一点,故错误;对,结合线面平行的判定定理和性质定理可判断其正确.综上正确.故选B.8.6解析过三棱柱ABC-A1B1C1的任意两条棱的中点作直线,记AC,BC,A1C1,B1C1的中点分别为E,F,E1,F1,则直线EF,E1F1,EE1,FF1,E1F,EF1均与平面ABB1A1平行,故符合题意的直线共6条.9.平行解析取PD的中点F,连接EF,AF,在PCD中,EF12CD.又ABCD且CD=2AB,EFAB,四边形ABEF是平行四边形,EBAF.又EB平面PAD,AF平面PAD,BE平面PAD.10.Q为CC1的中点解析如图,假设Q为CC1的中点,因为P为DD1的中点,所以QBPA.连接DB,因为P,O分别是DD1,DB的中点,所以D1BPO.又D1B平面PAO,QB平面PAO,所以D1B平面PAO,QB平面PAO.又D1BQB=B,所以平面D1BQ平面PAO.故Q满足条件Q为CC1的中点时,有平面D1BQ平面PAO.11.证法一连接DG,CD,设CDGF=M.连接MH.在三棱台DEF-ABC中,AB=2DE,G为AC的中点,可得DFGC,DF=GC,所以四边形DFCG为平行四边形.则M为CD的中点.又H为BC的中点,所以HMBD,又HM平面FGH,BD平面FGH,所以BD平面FGH.证法二在三棱台DEF-ABC中,由BC=2EF,H为BC的中点,可得BHEF,BH=EF,所以四边形HBEF为平行四边形,可得BEHF.在ABC中,G为AC的中点,H为BC的中点,所以GHAB.又GHHF=H,所以平面FGH平面ABED.因为BD平面ABED,所以BD平面FGH.12.(1)证明如图1,取BC中点N,连接MN,C1N,M是AB中点,MNACA1C1,M,N,C1,A1共面.BE=3EC,E是NC的中点.又D是CC1的中点,DENC1.DE平面MNC1A1,NC1平面MNC1A1,DE平面A1MC1.(2)解如图2,当AA1=1时,则AM=1,A1M=2,A1C1=2.三棱锥A-MA1C1的体积VA-A1MC1=VC1-A1AM=1312AMAA1A1C1=26.图1图213.B解析如图,由题意得,EFBD,且EF=15BD.HGBD,且HG=12BD,EFHG,且EFHG.四边形EFGH是梯形.又EF平面BCD,而EH与平面ADC不平行,故B正确.14.A解析(方法一)平面CB1D1,平面ABCD平面A1B1C1D1,平面ABCD=m,平面CB1D1平面A1B1C1D1=B1D1,mB1D1.平面CB1D1,平面ABB1A1平面DCC1D1,平面ABB1A1=n,平面CB1D1平面DCC1D1=CD1,nCD1.B1D1,CD1所成的角等于m,n所成的角,即B1D1C等于m,n所成的角.B1D1C为正三角形,B1D1C=60,m,n所成的角的正弦值为32.(方法二)由题意画出图形如图,将正方体ABCD-A1B1C1D1平移,补形为两个全等的正方体如图,易证平面AEF平面CB1D1,所以平面AEF即为平面,m即为AE,n即为AF,所以AE与AF所成的角即为m与n所成的角.因为AEF是正三角形,所以EAF=60,故m,n所成角的正弦值为32.15.C解析由面面平行的性质定理可知,正确;当n,m时,n和m在同一平面内,且没有公共点,所以平行,正确.故选C.16.452解析取AC的中点G,连接SG,BG.易知SGAC,BGAC,故AC平面SGB,所以ACSB.因为SB平面DEFH,SB平面SAB,平面SAB平面DEFH=HD,则SBHD.同理SBFE.又D,E分别为AB,BC的中点,则H,F也为AS,SC的中点,从而得HF12ACDE,所以四边形DEFH为平行四边形.又ACSB,SBHD,DEAC,所以DEHD,所以四边形DEFH为矩形,其面积S=HFHD=12AC12SB=452.17.(1)解取棱AD的中点M(M平面PAD),点M即为所求的一个点.理由如下:因为ADBC,BC=12AD,所以BCAM,且BC=AM.所以四边形AMCB是平行四边形,从而CMAB.又AB平面PAB,CM平面PAB,所以CM平面PAB.(说明:取棱PD的中点N,则所找的点可以是直线MN上任意一点)(2)证明由已知,PAAB,PACD,因为ADBC,BC=12AD,所以直线AB与CD相交.所以PA平面ABCD.从而PABD.因为ADBC,BC=12AD,所以BCMD,且BC=MD.所以四边形BCDM是平行四边形.所以BM=CD=12AD,所以BDAB.又ABAP=A,所以BD平面PAB.又BD平面PBD,所以平面PAB平面PBD.18.解(1)连接AC,设ACEF=H,连接AH.因为四边形ABCD是正方形,AE=AF=4,所以H是EF的中点,且EFAH,EFCH.从而有AHEF,CHEF,又AHCH=H,所以EF平面AHC,且EF平面ABCD.从而平面AHC平面ABCD.过点A作AO垂直HC且与HC相交于点O,则AO平面ABCD.因为正方形ABCD的边长为6,AE=AF=4,故AH=22,CH=42,所以cosAHC=AH2+CH2-AC22AHCH=8+32-2422242=12.所以HO=AHcosAHC=2,则AO=6.所以五棱锥A-BCDFE的体积V=1362-12446=2863.(2)线段AC上存在点M,使得BM平面AEF,此时AM=62.证明如下:连接OM,BD,BM,DM,且易知BD过O点.AM=62=14AC,HO=14HC,所以OMAH.又OM平面AEF,AH平面AEF,所以OM平面AEF.又BDEF,BD平面AEF,EF平面AEF,所以BD平面AEF.又BDOM=O,所以平面MBD平面AEF,因为BM平面MBD,所以BM平面AEF.