欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    计量经济学(第四版)习题集及参考材料内容标准答案详细版.doc

    • 资源ID:2626155       资源大小:618.95KB        全文页数:26页
    • 资源格式: DOC        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    计量经济学(第四版)习题集及参考材料内容标准答案详细版.doc

    ,.计量经济学(第四版)习题参考答案 潘省初第一章 绪论1.1 试列出计量经济分析的主要步骤。一般说来,计量经济分析按照以下步骤进行:(1)陈述理论(或假说) (2)建立计量经济模型 (3)收集数据(4)估计参数 (5)假设检验 (6)预测和政策分析1.2 计量经济模型中为何要包括扰动项?为了使模型更现实,我们有必要在模型中引进扰动项u来代表所有影响因变量的其它因素,这些因素包括相对而言不重要因而未被引入模型的变量,以及纯粹的随机因素。1.3什么是时间序列和横截面数据? 试举例说明二者的区别。时间序列数据时间序列数据是按时间周期(即按固定的时间间隔)收集的数据,如年度或季度的国民生产总值、就业、货币供给、财政赤字或某人一生中每年的收入都是时间序列的例子。横截面数据是在同一时点收集的不同个体(如个人、公司、国家等)的数据。如人口普查数据、世界各国2000年国民生产总值、全班学生计量经济学成绩等都是横截面数据的例子。1.4估计量和估计值有何区别?估计量是指一个公式或方法,它告诉人们怎样用手中样本所提供的信息去估计总体参数。在一项应用中,依据估计量算出的一个具体的数值,称为估计值。如就是一个估计量,。现有一样本,共4个数,100,104,96,130,则根据这个样本的数据运用均值估计量得出的均值估计值为。第二章 计量经济分析的统计学基础 2.1 略,参考教材。2.2请用例2.2中的数据求北京男生平均身高的99置信区间 =1.25 用a=0.05,N-1=15个自由度查表得=2.947,故99%置信限为 =1742.9471.25=1743.684 也就是说,根据样本,我们有99%的把握说,北京男高中生的平均身高在170.316至177.684厘米之间。2.3 25个雇员的随机样本的平均周薪为130元,试问此样本是否取自一个均值为120元、标准差为10元的正态总体? 原假设 备择假设 检验统计量查表 因为Z= 5 >,故拒绝原假设, 即此样本不是取自一个均值为120元、标准差为10元的正态总体。2.4 某月对零售商店的调查结果表明,市郊食品店的月平均销售额为2500元,在下一个月份中,取出16个这种食品店的一个样本,其月平均销售额为2600元,销售额的标准差为480元。试问能否得出结论,从上次调查以来,平均月销售额已经发生了变化?原假设 : 备择假设 : 查表得 因为t = 0.83 < , 故接受原假设,即从上次调查以来,平均月销售额没有发生变化。第三章 双变量线性回归模型3.1 判断题(说明对错;如果错误,则予以更正)(1)OLS法是使残差平方和最小化的估计方法。对(2)计算OLS估计值无需古典线性回归模型的基本假定。对(3)若线性回归模型满足假设条件(1)(4),但扰动项不服从正态分布,则尽管OLS估计量不再是BLUE,但仍为无偏估计量。错只要线性回归模型满足假设条件(1)(4),OLS估计量就是BLUE。(4)最小二乘斜率系数的假设检验所依据的是t分布,要求的抽样分布是正态分布。对(5)R2TSS/ESS。错R2 =ESS/TSS。(6)若回归模型中无截距项,则。对(7)若原假设未被拒绝,则它为真。错。我们可以说的是,手头的数据不允许我们拒绝原假设。(8)在双变量回归中,的值越大,斜率系数的方差越大。错。因为,只有当保持恒定时,上述说法才正确。3.2设和分别表示Y对X和X对Y的OLS回归中的斜率,证明r为X和Y的相关系数。证明:3.3证明:(1)Y的真实值与OLS拟合值有共同的均值,即 ;(2)OLS残差与拟合值不相关,即 。(1),即Y的真实值和拟合值有共同的均值。(2)3.4证明本章中(3.18)和(3.19)两式:(1) (2)(1)(2)3.5考虑下列双变量模型:模型1:模型2:(1)b1和a1的OLS估计量相同吗?它们的方差相等吗?(2)b2和a2的OLS估计量相同吗?它们的方差相等吗?(1),注意到由上述结果,可以看到,无论是两个截距的估计量还是它们的方差都不相同。(2)这表明,两个斜率的估计量和方差都相同。3.6有人使用19801994年度数据,研究汇率和相对价格的关系,得到如下结果:其中,Y马克对美元的汇率X美、德两国消费者价格指数(CPI)之比,代表两国的相对价格(1)请解释回归系数的含义;(2)Xt的系数为负值有经济意义吗? (3)如果我们重新定义X为德国CPI与美国CPI之比,X的符号会变化吗?为什么?(1)斜率的值 4.318表明,在19801994期间,相对价格每上升一个单位,(GM/$)汇率下降约4.32个单位。也就是说,美元贬值。截距项6.682的含义是,如果相对价格为0,1美元可兑换6.682马克。当然,这一解释没有经济意义。(2)斜率系数为负符合经济理论和常识,因为如果美国价格上升快于德国,则美国消费者将倾向于买德国货,这就增大了对马克的需求,导致马克的升值。(3)在这种情况下,斜率系数被预期为正数,因为,德国CPI相对于美国CPI越高,德国相对的通货膨胀就越高,这将导致美元对马克升值。3.7随机调查200位男性的身高和体重,并用体重对身高进行回归,结果如下:其中Weight的单位是磅(lb),Height的单位是厘米(cm)。(1)当身高分别为177.67cm、164.98cm、187.82cm时,对应的体重的拟合值为多少?(2)假设在一年中某人身高增高了3.81cm,此人体重增加了多少?(1)(2)3.8设有10名工人的数据如下:X1071058867910Y11101261079101110其中 X=劳动工时, Y=产量(1)试估计Y=+X + u(要求列出计算表格);(2)提供回归结果(按标准格式)并适当说明;(3)检验原假设=1.0。(1)序号YtXt111101.422.841.9610021070.4-1-0.410.1649312102.424.845.76100465-3.6-310.8912.962551080.40000.1664678-2.60006.7664796-0.6-21.240.363681070.4-1-0.410.164991191.411.411.96811010100.420.840.16100 968000212830.4668 估计方程为: (2) 回归结果为(括号中数字为t值): R2=0.518 (1.73) (2.93) 说明: Xt的系数符号为正,符合理论预期,0.75表明劳动工时增加一个单位,产量增加0.75个单位,拟合情况。 R2为0.518,作为横截面数据,拟合情况还可以.系数的显著性。斜率系数的t值为2.93,表明该系数显著异于0,即Xt对Yt有影响.(3) 原假设 : 备择假设 : 检验统计量 查t表, ,因为t= 0.978 < 2.306 ,故接受原假设:。3.9用12对观测值估计出的消费函数为Y=10.0+0.90X,且已知=0.01,=200,=4000,试预测当X=250时Y的值,并求Y的95%置信区间。 对于x0=250 ,点预测值 =10+0.90*250=235.0的95%置信区间为: 即 234.71 235.29。也就是说,我们有95%的把握预测将位于234.71 至235.29 之间.3.10设有某变量(Y)和变量(X)19951999年的数据如下:X61117813Y13524(1)试用OLS法估计 Yt = + Xt + ut(要求列出计算表格);(2)(3)试预测X=10时Y的值,并求Y的95%置信区间。(1)列表计算如下:序号YtXt116-2-5102543623110000012135172612364289428-1-339164541312241169155500277410679 我们有: (2) (3) 对于=10 ,点预测值 =-1.015+0.365*10=2.635 的95%置信区间为: = 即 1.895 3.099,也就是说,我们有95%的把握预测将位于1.865 至3.405 之间.3.11根据上题的数据及回归结果,现有一对新观测值X20,Y7.62,试问它们是否可能来自产生样本数据的同一总体?问题可化为“预测误差是否显著地大?”当X0 =20时,预测误差 原假设:备择假设:检验:若为真,则 对于5-2=3个自由度,查表得5%显著性水平检验的t临界值为:结论:由于故拒绝原假设,接受备则假设H1,即新观测值与样本观测值来自不同的总体。3.12有人估计消费函数,得到如下结果(括号中数字为t值): 15 + 0.81 0.98 (2.7) (6.5) n=19(1) 检验原假设:0(取显著性水平为5)(2) 计算参数估计值的标准误差;(3) 求的95置信区间,这个区间包括0吗?(1)原假设 备择假设 检验统计量 查t表,在5%显著水平下 ,因为t=6.5>2.11 故拒绝原假设,即,说明收入对消费有显著的影响。(2)由回归结果,立即可得: (3)b的95置信区间为: 3.13 回归之前先对数据进行处理。把名义数据转换为实际数据,公式如下:人均消费CC/P*100(价格指数)人均可支配收入YYr*rpop/100+Yu*(1-rpop/100)/P*100农村人均消费CrCr/Pr*100城镇人均消费CuCu/Pu*100农村人均纯收入YrYr/Pr*100 城镇人均可支配收入YuYu/Pu*100处理好的数据如下表所示: 年份CYCrCuYrYu1985401.78 478.57 317.42 673.20 397.60 739.10 1986436.93 507.48 336.43 746.66 399.43 840.71 1987456.14 524.26 353.41 759.84 410.47 861.05 1988470.23 522.22 360.02 785.96 411.56 841.08 1989444.72 502.13 339.06 741.38 380.94 842.24 1990464.88 547.15 354.11 773.09 415.69 912.92 1991491.64 568.03 366.96 836.27 419.54 978.23 1992516.77 620.43 372.86 885.34 443.44 1073.28 1993550.41 665.81 382.91 962.85 458.51 1175.69 1994596.23 723.96 410.00 1040.37 492.34 1275.67 1995646.35 780.49 449.68 1105.08 541.42 1337.94 1996689.69 848.30 500.03 1125.36 612.63 1389.35 1997711.96 897.63 501.75 1165.62 648.50 1437.05 1998737.16 957.91 498.38 1213.57 677.53 1519.93 1999785.69 1038.97 501.88 1309.90 703.25 1661.60 2000854.25 1103.88 531.89 1407.33 717.64 1768.31 2001910.11 1198.27 550.11 1484.62 747.68 1918.23 20021032.78 1344.27 581.95 1703.24 785.41 2175.79 20031114.40 1467.11 606.90 1822.63 818.93 2371.65 根据表中的数据用软件回归结果如下:= 90.93 + 0.692 R2=0.997t: (11.45) (74.82) DW=1.15农村:= 106.41 + 0.60 R2=0.979t: (8.82) (28.42) DW=0.76城镇:= 106.41 + 0.71 R2=0.998t: (13.74) (91.06) DW=2.02从回归结果来看,三个方程的R2都很高,说明人均可支配收入较好地解释了人均消费支出。三个消费模型中,可支配收入对人均消费的影响均是显著的,并且都大于0小于1,符合经济理论。而斜率系数最大的是城镇的斜率系数,其次是全国平均的斜率,最小的是农村的斜率。说明城镇居民的边际消费倾向高于农村居民。第四章 多元线性回归模型4.1 应采用(1),因为由(2)和(3)的回归结果可知,除X1外,其余解释变量的系数均不显著。(检验过程略)4.2 (1) 斜率系数含义如下:0.273: 年净收益的土地投入弹性, 即土地投入每上升1%, 资金投入不变的情况下, 引起年净收益上升0.273%.0.733: 年净收益的资金投入弹性, 即资金投入每上升1%, 土地投入不变的情况下, 引起年净收益上升0.733%. 拟合情况: ,表明模型拟合程度较高.(2) 原假设 备择假设 检验统计量 查表, 因为t=2.022<,故接受原假设,即不显著异于0, 表明土地投入变动对年净收益变动没有显著的影响. 原假设 备择假设 检验统计量 查表, 因为t=5.864>,故拒绝原假设,即显著异于0,表明资金投入变动对年净收益变动有显著的影响.(3) 原假设 备择假设 : 原假设不成立检验统计量 查表,在5%显著水平下 因为F=47>5.14,故拒绝原假设。结论,:土地投入和资金投入变动作为一个整体对年净收益变动有影响.4.3 检验两个时期是否有显著结构变化,可分别检验方程中D和DX的系数是否显著异于0.(1) 原假设 备择假设 检验统计量 查表 因为t=3.155>, 故拒绝原假设, 即显著异于0。(2) 原假设 备择假设 检验统计量 查表 因为|t|=3.155>, 故拒绝原假设, 即显著异于0。结论:两个时期有显著的结构性变化。4.4 (1) (2)变量、参数皆非线性,无法将模型转化为线性模型。(3)变量、参数皆非线性,但可转化为线性模型。取倒数得:把1移到左边,取对数为:,令4.5 (1)截距项为-58.9,在此没有什么意义。X1的系数表明在其它条件不变时,个人年消费量增加1百万美元,某国对进口的需求平均增加20万美元。X2的系数表明在其它条件不变时,进口商品与国内商品的比价增加1单位,某国对进口的需求平均减少10万美元。(2)Y的总变差中被回归方程解释的部分为96%,未被回归方程解释的部分为4%。(3)检验全部斜率系数均为0的原假设。 =由于F192 > F0.05(2,16)=3.63,故拒绝原假设,回归方程很好地解释了应变量Y。(4) A. 原假设H0:1= 0 备择假设H1:1 0 > t0.025(16)=2.12,故拒绝原假设,1显著异于零,说明个人消费支出(X1)对进口需求有解释作用,这个变量应该留在模型中。B. 原假设H0:2=0备择假设H1:2 0 <t0.025(16)=2.12,不能拒绝原假设,接受2=0,说明进口商品与国内商品的比价(X2)对进口需求地解释作用不强,这个变量是否应该留在模型中,需进一步研究。4.6(1)弹性为-1.34,它统计上异于0,因为在弹性系数真值为0的原假设下的t值为:得到这样一个t值的概率(P值)极低。可是,该弹性系数不显著异于-1,因为在弹性真值为-1的原假设下,t值为:这个t值在统计上是不显著的。(2)收入弹性虽然为正,但并非统计上异于0,因为t值小于1()。(3)由,可推出 本题中,0.27,n46,k2,代入上式,得0.3026。4.7 (1)薪金和每个解释变量之间应是正相关的,因而各解释变量系数都应为正,估计结果确实如此。系数0.280的含义是,其它变量不变的情况下,CEO薪金关于销售额的弹性为0.28;系数0.0174的含义是,其它变量不变的情况下,如果股本收益率上升一个百分点(注意,不是1),CEO薪金的上升约为1.07;与此类似,其它变量不变的情况下,公司股票收益上升一个单位,CEO薪金上升0.024。(2)用回归结果中的各系数估计值分别除以相应的标准误差,得到4个系数的t值分别为:13.5、8、4.25和0.44。用经验法则容易看出,前三个系数是统计上高度显著的,而最后一个是不显著的。(3)R20.283,拟合不理想,即便是横截面数据,也不理想。4.8 (1)2.4。(2)因为Dt和(Dtt)的系数都是高度显著的,因而两时期人口的水平和增长率都不相同。19721977年间增长率为1.5,19781992年间增长率为2.6(1.51.1)。4.9 原假设H0: 1 =2,3 =1.0 备择假设H1: H0不成立 若H0成立,则正确的模型是: 据此进行有约束回归,得到残差平方和。 若H1为真,则正确的模型是原模型: 据此进行无约束回归(全回归),得到残差平方和S。 检验统计量是: F(g,n-K-1) 用自由度(2,n-3-1)查F分布表,5%显著性水平下,得到FC , 如果F< FC, 则接受原假设H0,即1 =2,3 =0; 如果F> FC, 则拒绝原假设H0,接受备择假设H1。4.10 (1)2个,(2)4个,4.11 4.12 对数据处理如下:lngdpln(gdp/p) lnk=ln(k/p) lnL=ln(L/P)对模型两边取对数,则有lnYlnAalnKblnLlnv用处理后的数据回归,结果如下: t:(0.95) (16.46) (3.13) 由修正决定系数可知,方程的拟合程度很高;资本和劳动力的斜率系数均显著(tc=2.048), 资本投入增加1,gdp增加0.96%,劳动投入增加1,gdp增加0.18%,产出的资本弹性是产出的劳动弹性的5.33倍。第五章 模型的建立与估计中的问题及对策5.1(1)对(2)对(3)错即使解释变量两两之间的相关系数都低,也不能排除存在多重共线性的可能性。(4)对(5)错在扰动项自相关的情况下OLS估计量仍为无偏估计量,但不再具有最小方差的性质,即不是BLUE。(6)对(7)错模型中包括无关的解释变量,参数估计量仍无偏,但会增大估计量的方差,即增大误差。(8)错。在多重共线性的情况下,尽管全部“斜率”系数各自经t检验都不显著, R2值仍可能高。(9)错。存在异方差的情况下,OLS法通常会高估系数估计量的标准误差,但不总是。(10)错。异方差性是关于扰动项的方差,而不是关于解释变量的方差。5.2 对模型两边取对数,有lnYt=lnY0+t*ln(1+r)+lnut ,令LYlnYt,alnY0,bln(1+r),vlnut,模型线性化为:LYabtv估计出b之后,就可以求出样本期内的年均增长率r了。5.3(1)DW=0.81,查表(n=21,k=3,=5%)得dL=1.026。 DW=0.811.026 结论:存在正自相关。(2)DW=2.25,则DW=4 2.25 = 1.75 查表(n=15, k=2, =5%)得du =1.543。 1.543DW= 1.75 2 结论:无自相关。(3)DW= 1.56,查表(n=30, k=5, =5%)得dL =1.071, du =1.833。 1.071DW= 1.56 1.833结论:无法判断是否存在自相关。5.4(1) 横截面数据.(2) 不能采用OLS法进行估计,由于各个县经济实力差距大,可能存在异方差性。(3) GLS法或WLS法。5.5 (1)可能存在多重共线性。因为X3的系数符号不符合实际.R2很高,但解释变量的t值低:t2=0.9415/0.8229=1.144, t3=0.0424/0.0807=0.525.解决方法:可考虑增加观测值或去掉解释变量X3.(2)DW=0.8252, 查表(n=16,k=1,=5%)得dL=1.106.DW=0.8252< dL=1.106 结论:存在自相关. 单纯消除自相关,可考虑用科克伦奥克特法或希尔德雷斯卢法;进一步研究,由于此模型拟合度不高,结合实际,模型自相关有可能由模型误设定引起,即可能漏掉了相关的解释变量,可增加相关解释变量来消除自相关。5.6 存在完全多重共线性问题。因为年龄、学龄与工龄之间大致存在如下的关系:Ai7SiEi解决办法:从模型中去掉解释变量A,就消除了完全多重共线性问题。5.7 (1)若采用普通最小二乘法估计销售量对广告宣传费用的回归方程,则系数的估计量是无偏的,但不再是有效的,也不是一致的。(2)应用GLS法。设原模型为 (1)由于已知该行业中有一半的公司比另一半公司大,且已假定大公司的误差项方差是小公司误差项方差的两倍,则有,其中。则模型可变换为 (2)此模型的扰动项已满足同方差性的条件,因而可以应用OLS法进行估计。(3)可以。对变换后的模型(2)用戈德弗尔德匡特检验法进行异方差性检验。如果模型没有异方差性,则表明对原扰动项的方差的假定是正确的;如果模型还有异方差性,则表明对原扰动项的方差的假定是错误的,应重新设定。5.8(1)不能。因为第3个解释变量()是和的线性组合,存在完全多重共线性问题。(2)重新设定模型为我们可以估计出,但无法估计出。(3)所有参数都可以估计,因为不再存在完全共线性。(4)同(3)。5.9(1)R2很高,logK的符号不对,其 t值也偏低,这意味着可能存在多重共线性。(2)logK系数的预期符号为正,因为资本应该对产出有正向影响。但这里估计出的符号为负,是多重共线性所致。(3)时间趋势变量常常被用于代表技术进步。(1)式中,0.047的含义是,在样本期内,平均而言,实际产出的年增长率大约为4.7。(4)此方程隐含着规模收益不变的约束,即ab1,这样变换模型,旨在减缓多重共线性问题。(5)资本劳动比率的系数统计上不显著,看起来多重共线性问题仍没有得到解决。(6)两式中R2是不可比的,因为两式中因变量不同。5.10(1)所作的假定是:扰动项的方差与GNP的平方成正比。模型的估计者应该是对数据进行研究后观察到这种关系的,也可能用格里瑟法对异方差性形式进行了实验。(2)结果基本相同。第二个模型三个参数中的两个的标准误差比第一个模型低,可以认为是改善了第一个模型存在的异方差性问题。5.11 我们有原假设H0: 备则假设H1:检验统计量为:用自由度(25,25)查F表,5显著性水平下,临界值为:Fc1.97。因为F2.5454>Fc1.97,故拒绝原假设原假设H0:。结论:存在异方差性。5.12 将模型变换为:若、为已知,则可直接估计(2)式。一般情况下,、为未知,因此需要先估计它们。首先用OLS法估计原模型(1)式,得到残差et,然后估计:其中为误差项。用得到的和的估计值和生成令,用OLS法估计即可得到和,从而得到原模型(1)的系数估计值和。5.13 (1)全国居民人均消费支出方程:= 90.93 + 0.692 R2=0.997t: (11.45) (74.82) DW=1.15DW=1.15,查表(n=19,k=1,=5%)得dL=1.18。 DW=1.151.18结论:存在正自相关。可对原模型进行如下变换:Ct -Ct-1 = (1-)+(Yt-Yt-1)+(ut -ut -1)由令:Ct= Ct 0.425Ct-1 , Yt= Yt-0.425Yt-1 ,=0.575 然后估计 Ct=+Yt + t ,结果如下:= 55.57 + 0.688 R2=0.994 t:(11.45) (74.82) DW=1.97DW=1.97,查表(n=19,k=1,=5%)得du=1.401。 DW=1.97>1.18,故模型已不存在自相关。(2)农村居民人均消费支出模型:农村:= 106.41 + 0.60 R2=0.979t: (8.82) (28.42) DW=0.76DW=0.76,查表(n=19,k=1,=5%)得dL=1.18。 DW=0.761.18,故存在自相关。解决方法与(1)同,略。(3)城镇:= 106.41 + 0.71 R2=0.998t: (13.74) (91.06) DW=2.02DW=2.02,非常接近2,无自相关。5.14 (1)用表中的数据回归,得到如下结果: =54.19 + 0.061X1 + 1.98*X2 + 0.03X3 - 0.06X4 R20.91t: (1.41) (1.58) (3.81) (1.14) (-1.78)根据tc(=0.05,n-k-1=26)=2.056,只有X2的系数显著。 (2)理论上看,有效灌溉面积、农作物总播种面积是农业总产值的重要正向影响因素。在一定范围内,随着有效灌溉面积、播种面积的增加,农业总产值会相应增加。受灾面积与农业总产值呈反向关系,也应有一定的影响。而从模型看,这些因素都没显著影响。这是为什么呢? 这是因为变量有效灌溉面积、施肥量与播种面积间有较强的相关性,所以方程存在多重共线性。现在我们看看各解释变量间的相关性,相关系数矩阵如下:X1 X2 X3 X410.8960.8800.7150.89610.8950.6850.8800.89510.8830.7150.6850.8831X1X2 X3X4表中r120.896,r130.895,说明施肥量与有效灌溉面积和播种面积间高度相关。我们可以通过对变量X2的变换来消除多重共线性。令X22X2/X3(公斤/亩),这样就大大降低了施肥量与面积之间的相关性,用变量X22代替X2,对模型重新回归,结果如下: =233.62 + 0.088X1 + 13.66*X2 + 0.096X3 - 0.099X4 R20.91t: (-3.10) (2.48) (3.91) (4.77) (-3.19)从回归结果的t值可以看出,现在各个变量都已通过显著性检验,说明多重共线性问题基本得到解决。

    注意事项

    本文(计量经济学(第四版)习题集及参考材料内容标准答案详细版.doc)为本站会员(一***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开